Detection of absorbing aerosols from ground based observations of scattered sun light

Author(s):  
Thomas Wagner ◽  
Steffen Dörner ◽  
Sebastian Donner ◽  
Steffen Beirle ◽  
Janis Puķīte ◽  
...  

<p>Absorption of solar radiation by atmospheric aerosols is an important heat source in the atmosphere. The absorption potential by aerosols (usually quantified by the co single scattering albedo) can vary strongly, depending on the aerosol composition. The absorption potential can be captured by in-situ sample analyses or retrieved by remote sensing techniques (e.g. by sun/sky photometry). For a global view, advanced satellite sensors with polarization and especially multi-viewing would be required (e.g. 3MI). However, sensor data at different UV wavelengths (e.g. TOMS) already inform qualitatively on the presence of (elevated) absorbing aerosol (i.e. from mineral dust, wildfires) via the so-called UV absorbing aerosol index (UVAI).</p><p>In this study, we propose an UVAI similar approach for ground-based observations of scattered sun light. We first performed radiative transfer simulations. Based on these simulations we found that absorbing aerosols can indeed be identified from ground-based measurements. We could in particular show that the detection of absorbing aerosols is possible in the presence of clouds (except optical very thick clouds), which will be of special importance, because existing remote sensing measurements of the aerosol absorption are only possible for clear sky conditions.</p><p>We also derived the UVAI from ground based measurements during a ship cruise in April and May 2019 over the tropical Atlantic. Clearly enhanced values of the UVAI could be detected when the ship crossed air masses which were contaminated by desert dust aerosols from the Sahara.</p><p>We present these early results and discuss possible future improvements.</p>

2018 ◽  
Author(s):  
Kruthika Eswaran ◽  
Sreedharan Krishnakumari Satheesh ◽  
Jayaraman Srinivasan

Abstract. Single scattering albedo (SSA) represents a unique identification of aerosol type and aerosol radiative forcing. However, SSA retrievals are highly uncertain due cloud contamination and aerosol composition. Recent improvement in the SSA retrieval algorithm has combined the superior cloud masking technique of Moderate Resolution Imaging Spectroradiometer (MODIS) and the better sensitivity of Ozone Monitoring Instrument (OMI) to aerosol absorption. The combined OMI-MODIS algorithm has been validated over a small spatial and temporal scale only. The present study validates the algorithm over global oceans for the period 2008–2012. The geographical heterogeneity in the aerosol type and concentration over the Atlantic Ocean, the Arabian Sea and the Bay of Bengal was useful to delineate the effect of aerosol type on the retrieval algorithm. We also noted that OMI overestimates SSA when absorbing aerosols were present closer to the surface. We attribute this overestimation to data discontinuity in the aerosol height climatology derived from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite. OMI uses pre-defined aerosol heights over regions where CALIPSO climatology is not present leading to overestimation of SSA. The importance of aerosol height was also studied using the Santa Barbara DISORT radiative transfer (SBDART) model. The results from the joint retrieval were validated with ground-based measurements and it was seen that OMI-MODIS SSA retrievals were better constrained than OMI only retrieval.


2021 ◽  
Author(s):  
Meloë S. F. Kacenelenbogen ◽  
Qian Tan ◽  
Sharon P. Burton ◽  
Otto P. Hasekamp ◽  
Karl D. Froyd ◽  
...  

Abstract. Improvements in air quality and Earth’s climate predictions require improvements of the aerosol speciation in chemical transport models, using observational constraints. Aerosol speciation (e.g., organic aerosols, black carbon, sulfate, nitrate, ammonium, dust or sea salt) is typically determined using in situ instrumentation. Continuous, routine surface network aerosol composition measurements are not uniformly widespread over the globe. Satellites, on the other hand, can provide a maximum coverage of the horizontal and vertical atmosphere but observe aerosol optical properties (and not aerosol speciation) based on remote sensing instrumentation. Combinations of satellite-derived aerosol optical properties can inform on air mass aerosol types (AMTs e.g., clean marine, dust, polluted continental). However, these AMTs are subjectively defined, might often be misclassified and are hard to relate to the critical parameters that need to be refined in models. In this paper, we derive AMTs that are more directly related to sources and hence to speciation. They are defined, characterized, and derived using simultaneous in situ gas-phase, chemical and optical instruments on the same aircraft during the Study of Emissions and Atmospheric Composition, Clouds, and Climate Coupling by Regional Surveys (SEAC4RS, US, summer of 2013). First, we prescribe well-informed AMTs that display distinct aerosol chemical and optical signatures to act as a training AMT dataset. These in situ observations reduce the errors and ambiguities in the selection of the AMT training dataset. We also investigate the relative skill of various combinations of aerosol optical properties to define AMTs and how much these optical properties can capture dominant aerosol speciation. We find distinct optical signatures for biomass burning (from agricultural or wildfires), biogenic and dust-influence AMTs. Useful aerosol optical properties to characterize these signatures are the extinction angstrom exponent (EAE), the single scattering albedo, the difference of single scattering albedo in two wavelengths, the absorption coefficient, the absorption angstrom exponent (AAE), and the real part of the refractive index (RRI). We find that all four AMTs studied when prescribed using mostly airborne in situ gas measurements, can be successfully extracted from at least three combinations of airborne in situ aerosol optical properties (e.g., EAE, AAE and RRI) over the US during SEAC4RS. However, we find that the optically based classifications for BB from agricultural fires and polluted dust include a large percentage of misclassifications that limit the usefulness of results relating to those classes. The technique and results presented in this study are suitable to develop a representative, robust and diverse source-based AMT database. This database could then be used for widespread retrievals of AMTs using existing and future remote sensing suborbital instruments/networks. Ultimately, it has the potential to provide a much broader observational aerosol data set to evaluate chemical transport and air quality models than is currently available by direct in situ measurements. This study illustrates how essential it is to explore existing airborne datasets to bridge chemical and optical signatures of different AMTs, before the implementation of future spaceborne missions (e.g., the next generation of Earth Observing System (EOS) satellites addressing Aerosol, Cloud, Convection and Precipitation (ACCP) designated observables).


2012 ◽  
Vol 5 (7) ◽  
pp. 1653-1665 ◽  
Author(s):  
F. C. Seidel ◽  
C. Popp

Abstract. We analyse the critical surface albedo (CSA) and its implications to aerosol remote sensing. CSA is defined as the surface albedo where the reflectance at top-of-atmosphere (TOA) does not depend on aerosol optical depth (AOD). AOD retrievals are therefore inaccurate at the CSA. The CSA is obtained by derivatives of the TOA reflectance with respect to AOD using a radiative transfer code. We present the CSA and the effect of surface albedo uncertainties on AOD retrieval and atmospheric correction as a function of aerosol single-scattering albedo, illumination and observation geometry, wavelength and AOD. In general, increasing aerosol absorption and increasing scattering angles lead to lower CSA. In contrast to the strict definition of the CSA, we show that the CSA can also slightly depend on AOD and therefore rather represent a small range of surface albedo values. This was often neglected in previous studies. The following implications to aerosol remote sensing applications were found: (i) surface albedo uncertainties result in large AOD retrieval errors, particularly close to the CSA; (ii) AOD retrievals of weakly or non-absorbing aerosols require dark surfaces, while strongly absorbing aerosols can be retrieved more accurately over bright surfaces; (iii) the CSA may help to estimate aerosol absorption; and (iv) the presented sensitivity of the reflectance at TOA to AOD provides error estimations to optimise AOD retrieval algorithms.


2011 ◽  
Vol 4 (6) ◽  
pp. 7725-7750 ◽  
Author(s):  
F. C. Seidel ◽  
C. Popp

Abstract. We analyse the critical surface albedo (CSA) and its implications to aerosol remote sensing. CSA is defined as the surface albedo, where the reflectance at top-of-atmosphere (TOA) does not depend on aerosol optical depth (AOD). AOD retrievals are therefore inaccurate at the CSA. The CSA is obtained by derivatives of the TOA reflectance with respect to AOD using a radiative transfer code. We present the CSA and the effect of surface albedo uncertainties on AOD retrieval and atmospheric correction as a function of aerosol single-scattering albedo, illumination and observation geometry, wavelength and AOD. In general, increasing aerosol absorption and increasing scattering angles lead to lower CSA. We show that the CSA also depends on AOD, which was often neglected in previous studies. The following implications to aerosol remote sensing applications were found: (i) surface albedo uncertainties result in large AOD retrieval errors, particularly close to the CSA; (ii) AOD retrievals of non-absorbing aerosols require dark surfaces, while strong absorbing aerosols can be retrieved more accurately over bright surfaces; (iii) the CSA may help to estimate aerosol absorption; and (iv) the presented sensitivity of the reflectance at TOA to AOD provides error estimations to optimise AOD retrieval algorithms.


2004 ◽  
Vol 4 (5) ◽  
pp. 1255-1263 ◽  
Author(s):  
B. Mayer ◽  
M. Schröder ◽  
R. Preusker ◽  
L. Schüller

Abstract. Cloud single scattering properties are mainly determined by the effective radius of the droplet size distribution. There are only few exceptions where the shape of the size distribution affects the optical properties, in particular the rainbow and the glory directions of the scattering phase function. Using observations by the Compact Airborne Spectrographic Imager (CASI) in 180° backscatter geometry, we found that high angular resolution aircraft observations of the glory provide unique new information which is not available from traditional remote sensing techniques: Using only one single wavelength, 753nm, we were able to determine not only optical thickness and effective radius, but also the width of the size distribution at cloud top. Applying this novel technique to the ACE-2 CLOUDYCOLUMN experiment, we found that the size distributions were much narrower than usually assumed in radiation calculations which is in agreement with in-situ observations during this campaign. While the shape of the size distribution has only little relevance for the radiative properties of clouds, it is extremely important for understanding their formation and evolution.


2013 ◽  
Vol 6 (10) ◽  
pp. 2659-2669 ◽  
Author(s):  
A. Bayat ◽  
H. R. Khalesifard ◽  
A. Masoumi

Abstract. The polarized phase function of atmospheric aerosols has been investigated for the atmosphere of Zanjan, a city in northwest Iran. To do this, aerosol optical depth, Ångström exponent, single-scattering albedo, and polarized phase function have been retrieved from the measurements of a Cimel CE 318-2 polarized sun-photometer from February 2010 to December 2012. The results show that the maximum value of aerosol polarized phase function as well as the polarized phase function retrieved for a specific scattering angle (i.e., 60°) are strongly correlated (R = 0.95 and 0.95, respectively) with the Ångström exponent. The latter has a meaningful variation with respect to the changes in the complex refractive index of the atmospheric aerosols. Furthermore the polarized phase function shows a moderate negative correlation with respect to the atmospheric aerosol optical depth and single-scattering albedo (R = −0.76 and −0.33, respectively). Therefore the polarized phase function can be regarded as a key parameter to characterize the atmospheric particles of the region – a populated city in the semi-arid area and surrounded by some dust sources of the Earth's dust belt.


2017 ◽  
Vol 17 (14) ◽  
pp. 9145-9162 ◽  
Author(s):  
Lena Frey ◽  
Frida A.-M. Bender ◽  
Gunilla Svensson

Abstract. The effects of different aerosol types on cloud albedo are analysed using the linear relation between total albedo and cloud fraction found on a monthly mean scale in regions of subtropical marine stratocumulus clouds and the influence of simulated aerosol variations on this relation. Model experiments from the Coupled Model Intercomparison Project phase 5 (CMIP5) are used to separately study the responses to increases in sulfate, non-sulfate and all anthropogenic aerosols. A cloud brightening on the month-to-month scale due to variability in the background aerosol is found to dominate even in the cases where anthropogenic aerosols are added. The aerosol composition is of importance for this cloud brightening, that is thereby region dependent. There is indication that absorbing aerosols to some extent counteract the cloud brightening but scene darkening with increasing aerosol burden is generally not supported, even in regions where absorbing aerosols dominate. Month-to-month cloud albedo variability also confirms the importance of liquid water content for cloud albedo. Regional, monthly mean cloud albedo is found to increase with the addition of anthropogenic aerosols and more so with sulfate than non-sulfate. Changes in cloud albedo between experiments are related to changes in cloud water content as well as droplet size distribution changes, so that models with large increases in liquid water path and/or cloud droplet number show large cloud albedo increases with increasing aerosol. However, no clear relation between model sensitivities to aerosol variations on the month-to-month scale and changes in cloud albedo due to changed aerosol burden is found.


2016 ◽  
Vol 9 (8) ◽  
pp. 3477-3490 ◽  
Author(s):  
Nir Bluvshtein ◽  
J. Michel Flores ◽  
Lior Segev ◽  
Yinon Rudich

Abstract. Atmospheric aerosols play an important part in the Earth's energy budget by scattering and absorbing incoming solar and outgoing terrestrial radiation. To quantify the effective radiative forcing due to aerosol–radiation interactions, researchers must obtain a detailed understanding of the spectrally dependent intensive and extensive optical properties of different aerosol types. Our new approach retrieves the optical coefficients and the single-scattering albedo of the total aerosol population over 300 to 650 nm wavelength, using extinction measurements from a broadband cavity-enhanced spectrometer at 315 to 345 nm and 390 to 420 nm, extinction and absorption measurements at 404 nm from a photoacoustic cell coupled to a cavity ring-down spectrometer, and scattering measurements from a three-wavelength integrating nephelometer. By combining these measurements with aerosol size distribution data, we retrieved the time- and wavelength-dependent effective complex refractive index of the aerosols. Retrieval simulations and laboratory measurements of brown carbon proxies showed low absolute errors and good agreement with expected and reported values. Finally, we implemented this new broadband method to achieve continuous spectral- and time-dependent monitoring of ambient aerosol population, including, for the first time, extinction measurements using cavity-enhanced spectrometry in the 315 to 345 nm UV range, in which significant light absorption may occur.


Sign in / Sign up

Export Citation Format

Share Document