First observation of significant long-lasting Thunderstorm Ground Enhancements on the Milešovka peak (altitude 837 m) in Czechia

Author(s):  
Ivana Kolmašová ◽  
Ondřej Santolík ◽  
Ondřej Ploc ◽  
Ronald Langer ◽  
Jana Popová ◽  
...  

<p>Bursts of gamma rays observed on the Earth’s surface – so called Thunderstorm Ground Enhancements (TGE) were detected by a plastic scintillator (disassembled from the particle detector SEVAN) located in the observatory building on the Milešovka peak (50.6N, 13.9E, altitude 837 m) in Czechia. The TGEs observed during two thunderstorms on 23 April 2018 respectively lasted 65 and 15 minutes and exceeded the background radiation levels by 30 and 40 percent.</p><p>The first storm was a part of an evolving squall line which crossed the Milešovka peak. The second storm was probably a supercell, which moved near Milešovka but did not hit its top. Both storms caused heavy precipitation and strong wind gusts. The onset of the TGEs preceded the onset of precipitation by approximately 8 minutes. During the increases of TGE radiation, the European lightning detection network EUCLID detected numerous predominantly negative intracloud lightning discharges at distances closer than 5 km from the particle detector.</p><p>To understand the conditions for the TGE observation we investigated the data collected during the enhancements by a Ka-band cloud radar, an electric field mill, and a broadband electromagnetic receiver installed in the Milešovka peak observatory. Using the cloud radar measurements, we estimated the vertical extent of the thunderclouds. The cloud base was found at about 500 m above the observatory. Estimated heights of the cloud tops for the two storms were 12 and 8 km, respectively, indicating that the storm center of the second storm was not directly above the cloud radar. The updraft velocities reached 10 m/s.  A composition of hydrometeors suggested good conditions for cloud electrification.</p><p>We have found that the increases of TGE radiation corresponded to the large negative electric fields (up to – 20 kV/m) measured by the electric field mill rather than to individual discharges. We also identified numerous microsecond-scale pulses in the broadband magnetic field records, which can be attributed to corona-type discharges occurring near the receiving antenna in high local electric fields below the thunderstorm.</p><p>Based on our analysis we assume that observed TGEs corresponded to the bremsstrahlung generated during collisions of electrons accelerated in the thunderstorm electric field with the air molecules. Because of a very small number of cloud-to-ground lighting discharges we hypothesize that the electrons might have been accelerated by a strong lower positive charge center at the bottom of the thundercloud. As the TGE radiation increases were unusually long, we speculate that their later part might have been assigned to the radon progeny which was lifted to the atmosphere by a near-surface electric field and returned back to the ground with the rain precipitation.</p>

2014 ◽  
Vol 14 (2) ◽  
pp. 427-441 ◽  
Author(s):  
M. C. Llasat ◽  
M. Turco ◽  
P. Quintana-Seguí ◽  
M. Llasat-Botija

Abstract. A heavy precipitation event swept over Catalonia (NE Spain) on 8 March 2010, with a total amount that exceeded 100 mm locally and snowfall of more than 60 cm near the coast. Unusual for this region and at this time of the year, this snowfall event affected mainly the coastal region and was accompanied by thunderstorms and strong wind gusts in some areas. Most of the damage was due to "wet snow", a kind of snow that favours accretion on power lines and causes line-breaking and subsequent interruption of the electricity supply. This paper conducts an interdisciplinary analysis of the event to show its great societal impact and the role played by the recently developed social networks (it has been called the first "Snowfall 2.0"), as well to analyse the meteorological factors associated with the major damage, and to propose an indicator that could summarise them. With this aim, the paper introduces the event and its societal impact and compares it with other important snowfalls that have affected the Catalan coast, using the PRESSGAMA database. The second part of the paper shows the event's main meteorological features and analyses the near-surface atmospheric variables responsible for the major damage through the application of the SAFRAN (Système d'analyse fournissant des renseignements atmosphériques à la neige) mesoscale analysis, which, together with the proposed "wind, wet-snow index" (WWSI), allows to estimate the severity of the event. This snow storm provides further evidence of our vulnerability to natural hazards and highlights the importance of a multidisciplinary approach in analysing societal impact and the meteorological factors responsible for this kind of event.


2007 ◽  
Vol 40 (3) ◽  
pp. 505-512 ◽  
Author(s):  
D. Walker ◽  
P. A. Thomas ◽  
P. Pernot-Rejmánková ◽  
J. Baruchel

Recent work on the non-linear optical single-crystal rubidium titanyl arsenate (RbTiOAsO4, RTA) has shown that it exhibits behaviour consistent with a ferroelectric semiconductor under large applied electric fields, with the development of a non-uniform field in the near-surface region. To confirm aspects of the proposed model, the behaviour of 001 slices of initially single-domain RTA, patterned with periodic Ag electrodes of spacing 38 µm, as for periodic poling in non-linear optics, were investigated using synchrotron X-ray section topography with the electric field appliedin situwhile under X-ray illumination at the ID19 topography beamline of the ESRF, Grenoble. The results of white-beam section topography as both a function of crystal to film distance, and under DC voltage are reported, confirming that there is a bending of the planes in the near-surface region. The strain in the near-surface region was examined directly using high-resolution monochromatic X-ray section topography. This revealed an extensive strain of 3 (±1) × 10−4at 1 kV, indicating that the electrostrictive coefficient, γ3333, in RTA is positive in sign.


2009 ◽  
Vol 66 (9) ◽  
pp. 2730-2746 ◽  
Author(s):  
Alexandre O. Fierro ◽  
Joanne Simpson ◽  
Margaret A. LeMone ◽  
Jerry M. Straka ◽  
Bradley F. Smull

Abstract An airflow trajectory analysis was carried out based on an idealized numerical simulation of the nocturnal 9 February 1993 equatorial oceanic squall line observed over the Tropical Ocean and Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE) ship array. This simulation employed a nonhydrostatic numerical cloud model, which features a sophisticated 12-class bulk microphysics scheme. A second convective system that developed immediately south of the ship array a few hours later under similar environmental conditions was the subject of intensive airborne quad-Doppler radar observations, allowing observed airflow trajectories to be meaningfully compared to those from the model simulation. The results serve to refine the so-called hot tower hypothesis, which postulated the notion of undiluted ascent of boundary layer air to the high troposphere, which has for the first time been tested through coordinated comparisons with both model output and detailed observations. For parcels originating ahead (north) of the system near or below cloud base in the boundary layer (BL), the model showed that a majority (>62%) of these trajectories were able to surmount the 10-km level in their lifetime, with about 5% exceeding 14-km altitude, which was near the modeled cloud top (15.5 km). These trajectories revealed that during ascent, most air parcels first experienced a quick decrease of equivalent potential temperature (θe) below 5-km MSL as a result of entrainment of lower ambient θe air. Above the freezing level, ascending parcels experienced an increase in θe with height attributable to latent heat release from ice processes consistent with previous hypotheses. Analogous trajectories derived from the evolving observed airflow during the mature stage of the airborne radar–observed system identified far fewer (∼5%) near-BL parcels reaching heights above 10 km than shown by the corresponding simulation. This is attributed to both the idealized nature of the simulation and to the limitations inherent to the radar observations of near-surface convergence in the subcloud layer. This study shows that latent heat released above the freezing level can compensate for buoyancy reduction by mixing at lower levels, thus enabling air originating in the boundary layer to contribute to the maintenance of both local buoyancy and the large-scale Hadley cell despite acknowledged dilution by mixing along updraft trajectories. A tropical “hot tower” should thus be redefined as any deep convective cloud with a base in the boundary layer and reaching near the upper-tropospheric outflow layer.


Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 461
Author(s):  
Valéria L. Bezerra ◽  
Cléo Q. Dias-Júnior ◽  
Roseilson S. Vale ◽  
Raoni A. Santana ◽  
Santiago Botía ◽  
...  

Squall lines (SLs) are convective systems that cause heavy precipitation and consequently modify the atmospheric thermodynamic structure near the surface. SLs generated along the northern coast of Brazil and their effect upon atmospheric structure during their westward displacement into the Amazon are studied. Satellite imagery was employed to identify an SL above two experimental sites in the central Amazon and to characterize differences in the near-surface turbulent and ozone exchange during the passage of the SLs. The two sites, which are separated by about 100 km, feature contrasting vegetation. One site is tall canopy rainforest and the other is deforested. From our case study, it is noted that: equivalent potential temperature significantly drops, principally in the forested region; the average near-surface wind speed increases 5 fold; the skewness of vertical wind velocity becomes considerably negative; significant increases in turbulence intensity are observed. These changes suggest the presence of strong downdrafts generated by the SL. Shear production and dissipation rate of turbulent kinetic energy are considerably larger during the SL when compared to periods with absence of SL. In this study, we show that SLs are capable of modifying the vertical organization of the turbulence over forested and deforested areas, leading to changes in certain chemical processes that occur near the surface. To the best of our knowledge, this study represents a first in demonstrating that near-surface turbulent flow in the Amazon region is modified by the presence of SLs.


2017 ◽  
Vol 210 (2) ◽  
pp. 1171-1175
Author(s):  
Lachlan Hennessy ◽  
James Macnae

AbstractGalvanic distortions complicate magnetotelluric (MT) soundings. In this research, we use lightning network data to identify specific sferics in MT measurements and analyse these events on the basis of the lightning source location. Without source information, identification and removal of galvanic distortion is a fundamentally ill-posed problem, unless data are statistically decomposed into determinable and indeterminable parts. We use realistic assumptions of the earth-ionosphere waveguide propagation velocity to accurately predict the time of arrival, azimuth and amplitude for every significant sferic in our time-series data. For each sferic with large amplitude, we calculate the rotation of the electric field from the measured to the predicted arrival azimuth. This rotation of the electric field is a primary parameter of distortion. Our results demonstrate that a rudimentary model for near-surface galvanic distortion consistently fits observed electric field rotations. When local features rotate regional electric fields, then counter-rotating data to predicted arrival azimuths should correct the directional dependence of static shift. Although we used amplitude thresholds to simplify statistical processing, future developments should incorporate both signal-to-noise improvements and multisite decompositions. Lower amplitude signal may also be useful after the appropriate signal processing for noise reduction. We anticipate our approach will be useful for further work on MT distortion.


2009 ◽  
Vol 26 (5) ◽  
pp. 958-971 ◽  
Author(s):  
Zhe Feng ◽  
Xiquan Dong ◽  
Baike Xi

Abstract A decade of collocated Atmospheric Radiation Measurement Program (ARM) 35-GHz Millimeter Cloud Radar (MMCR) and Weather Surveillance Radar-1988 Doppler (WSR-88D) data over the ARM Southern Great Plains (SGP) site have been collected during the period of 1997–2006. A total of 28 winter and 45 summer deep convective system (DCS) cases over the ARM SGP site have been selected for this study during the 10-yr period. For the winter cases, the MMCR reflectivity, on average, is only 0.2 dB lower than that of the WSR-88D, with a correlation coefficient of 0.85. This result indicates that the MMCR signals have not been attenuated for ice-phase convective clouds, and the MMCR reflectivity measurements agree well with the WSR-88D, regardless of their vastly different characteristics. For the summer nonprecipitating convective clouds, however, the MMCR reflectivity, on average, is 10.6 dB lower than the WSR-88D measurement, and the average differences between the two radar reflectivities are nearly constant with height above cloud base. Three lookup tables with Mie calculations have been generated for correcting the MMCR signal attenuation. After applying attenuation correction for the MMCR reflectivity measurements, the averaged difference between the two radars has been reduced to 9.1 dB. Within the common sensitivity range (−10 to 20 dBZ), the mean differences for the uncorrected and corrected MMCR reflectivities have been reduced to 6.2 and 5.3 dB, respectively. The corrected MMCR reflectivities were then merged with the WSR-88D data to fill in the gaps during the heavy precipitation periods. This merged dataset provides a more complete radar reflectivity profile for studying convective systems associated with heavier precipitation than the original MMCR dataset. It also provides the intensity, duration, and frequency of the convective systems as they propagate over the ARM SGP for climate modelers. Eventually, it will be possible to improve understanding of the cloud-precipitation processes, and evaluate GCM predictions using the long-term merged dataset, which could not have been done with either the MMCR or the WSR-88D dataset alone.


2018 ◽  
Vol 62 ◽  
pp. 01013 ◽  
Author(s):  
Anatoliy Toropov ◽  
Sergey Starodubtzev ◽  
Vladimir Kozlov

The results of a study strong increase in gamma-ray background in the surface layer of the atmosphere during precipitation and near thunderstorms in Yakutsk (based on the Cosmic Ray Spectrometer of the Institute of Cosmic Rays of the Siberian Branch of the Russian Academy of Sciences) and Tiksi (Polar Geospace Observatory of the IKFIA SB RAS) are present in this paper. Scintillation detectors based on NaI (Tl) crystals with a size of 63mm x 63mm are used to register gammaray . The range of measured energies is 20-1900 keV. Detectors are closed from the sides and from below with lead (5 cm) and placed in thermoboxes having a glass window. Both of the detectors are located on the roof of buildings in Yakutsk and Tiksi. Also, synchronous registration of variations of the atmospheric electric field, (electrostatic fluxmeters Boltek EFM-100) and main meteorological parameters of the atmosphere (ultrasonic weather station AMK-04). An explicit relationship was found between the increase in the background gamma-ray and heavy rainfall. The energy spectra of the gamma background are obtained under “good” weather conditions and during heavy precipitation and near thunderstorms. The carried out researches allow to consider that the increase of the gamma background is connected, first of all, with the emission of radon and its daughter products from the ground and, to a lesser extent, with bremsstrahlung of charged particles in strong electric fields of a thunderstorm atmosphere.


2019 ◽  
Author(s):  
Johannes P. Dürholt ◽  
Babak Farhadi Jahromi ◽  
Rochus Schmid

Recently the possibility of using electric fields as a further stimulus to trigger structural changes in metal-organic frameworks (MOFs) has been investigated. In general, rotatable groups or other types of mechanical motion can be driven by electric fields. In this study we demonstrate how the electric response of MOFs can be tuned by adding rotatable dipolar linkers, generating a material that exhibits paralectric behavior in two dimensions and dielectric behavior in one dimension. The suitability of four different methods to compute the relative permittivity κ by means of molecular dynamics simulations was validated. The dependency of the permittivity on temperature T and dipole strength μ was determined. It was found that the herein investigated systems exhibit a high degree of tunability and substantially larger dielectric constants as expected for MOFs in general. The temperature dependency of κ obeys the Curie-Weiss law. In addition, the influence of dipolar linkers on the electric field induced breathing behavior was investigated. With increasing dipole moment, lower field strength are required to trigger the contraction. These investigations set the stage for an application of such systems as dielectric sensors, order-disorder ferroelectrics or any scenario where movable dipolar fragments respond to external electric fields.


Photonics ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 107
Author(s):  
Haichao Yu ◽  
Feng Tang ◽  
Jingjun Wu ◽  
Zao Yi ◽  
Xin Ye ◽  
...  

In intense-light systems, the traditional discrete optical components lead to high complexity and high cost. Metasurfaces, which have received increasing attention due to the ability to locally manipulate the amplitude, phase, and polarization of light, are promising for addressing this issue. In the study, a metasurface-based reflective deflector is investigated which is composed of silicon nanohole arrays that confine the strongest electric field in the air zone. Subsequently, the in-air electric field does not interact with the silicon material directly, attenuating the optothermal effect that causes laser damage. The highest reflectance of nanoholes can be above 99% while the strongest electric fields are tuned into the air zone. One presentative deflector is designed based on these nanoholes with in-air-hole field confinement and anti-damage potential. The 1st order of the meta-deflector has the highest reflectance of 55.74%, and the reflectance sum of all the orders of the meta-deflector is 92.38%. The optothermal simulations show that the meta-deflector can theoretically handle a maximum laser density of 0.24 W/µm2. The study provides an approach to improving the anti-damage property of the reflective phase-control metasurfaces for intense-light systems, which can be exploited in many applications, such as laser scalpels, laser cutting devices, etc.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Marie C. Lefevre ◽  
Gerwin Dijk ◽  
Attila Kaszas ◽  
Martin Baca ◽  
David Moreau ◽  
...  

AbstractGlioblastoma is a highly aggressive brain tumor, very invasive and thus difficult to eradicate with standard oncology therapies. Bioelectric treatments based on pulsed electric fields have proven to be a successful method to treat cancerous tissues. However, they rely on stiff electrodes, which cause acute and chronic injuries, especially in soft tissues like the brain. Here we demonstrate the feasibility of delivering pulsed electric fields with flexible electronics using an in ovo vascularized tumor model. We show with fluorescence widefield and multiphoton microscopy that pulsed electric fields induce vasoconstriction of blood vessels and evoke calcium signals in vascularized glioblastoma spheroids stably expressing a genetically encoded fluorescence reporter. Simulations of the electric field delivery are compared with the measured influence of electric field effects on cell membrane integrity in exposed tumor cells. Our results confirm the feasibility of flexible electronics as a means of delivering intense pulsed electric fields to tumors in an intravital 3D vascularized model of human glioblastoma.


Sign in / Sign up

Export Citation Format

Share Document