The role of ocean heat transport from the Atlantic into the Arctic Ocean on sea ice variability

Author(s):  
David Schroeder ◽  
Danny Feltham

<p>The decrease of Arctic sea ice affects the future climate in the Arctic and beyond. Therefore, it is important to understand the drivers of sea ice variability and trend. Previous model studies found that the summer sea ice is mainly driven by atmospheric processes (incoming radiation and albedo feedback) and the winter sea ice extent by ocean processes (ocean heat transport from Atlantic into Arctic Ocean, e.g. applying Community Earth System Model large ensemble simulation). In our study, we analyse a historical simulation with the UK Earth System Model (UKESM1) performed for CMIP6 from 1850 to 2014 and ocean – sea ice simulations forced by atmospheric reanalysis data with the same ocean model NEMOv3.6 and sea ice model CICEv5.1. The UKESM simulation confirms previous findings showing that the ocean heat transport between Norway and Svalbard (Barents Sea Opening; BSO) is strongly correlated with the winter (and annual) sea ice extent in the Barents Sea and the whole Arctic. However, there is no correlation in the atmospheric-forced simulations suggesting that the interaction between atmosphere and ocean is crucial. We will present sensitivity simulations showing the impact of atmospheric forcing data on the BSO heat flux and analyse the role of atmospheric processes (large scale circulation, cloud formation) on winter sea ice conditions.</p>

2021 ◽  
Vol 34 (2) ◽  
pp. 787-804
Author(s):  
Yu-Chiao Liang ◽  
Young-Oh Kwon ◽  
Claude Frankignoul

AbstractThis study uses observational and reanalysis datasets in 1980–2016 to show a close connection between a boreal autumn sea ice dipole in the Arctic Pacific sector and sea ice anomalies in the Barents Sea (BS) during the following spring. The September–October Arctic Pacific sea ice dipole variations are highly correlated with the subsequent April–May BS sea ice variations (r = 0.71). The strong connection between the regional sea ice variabilities across the Arctic uncovers a new source of predictability for spring BS sea ice prediction at 7-month lead time. A cross-validated linear regression prediction model using the Arctic Pacific sea ice dipole with 7-month lead time is demonstrated to have significant prediction skills with 0.54–0.85 anomaly correlation coefficients. The autumn sea ice dipole, manifested as sea ice retreat in the Beaufort and Chukchi Seas and expansion in the East Siberian and Laptev Seas, is primarily forced by preceding atmospheric shortwave anomalies from late spring to early autumn. The spring BS sea ice increases are mostly driven by an ocean-to-sea ice heat flux reduction in preceding months, associated with reduced horizontal ocean heat transport into the BS. The dynamical linkage between the two regional sea ice anomalies is suggested to involve positive stratospheric polar cap anomalies during autumn and winter, with its center slowly moving toward Greenland. The migration of the stratospheric anomalies is followed in midwinter by a negative North Atlantic Oscillation–like pattern in the troposphere, leading to reduced ocean heat transport into the BS and sea ice extent increase.


2021 ◽  
Author(s):  
Jakob Dörr ◽  
Marius Årthun ◽  
Tor Eldevik ◽  
Erica Madonna

<p>The recent retreat of Arctic sea ice area is overlaid by strong internal variability on all timescales. In winter, sea ice retreat and variability are currently dominated by the Barents Sea, primarily driven by variable ocean heat transport from the Atlantic. Climate models from the latest intercomparison project CMIP6 project that the future loss of winter Arctic sea ice spreads throughout the Arctic Ocean and, hence, that other regions of the Arctic Ocean will see increased sea-ice variability. It is, however, not known how the influence of ocean heat transport will change, and to what extent and in which regions other drivers, such as atmospheric circulation or river runoff into the Arctic Ocean, will become important. Using a combination of observations and simulations from the Community Earth System Model Large Ensemble (CESM-LE), we analyze and contrast the present and future regional drivers of the variability of the winter Arctic sea ice cover. We find that for the recent past, both observations and CESM-LE show that sea ice variability in the Atlantic and Pacific sector of the Arctic Ocean is influenced by ocean heat transport through the Barents Sea and Bering Strait, respectively. The two dominant modes of large-scale atmospheric variability – the Arctic Oscillation and the Pacific North American pattern – are only weakly related to recent regional sea ice variability. However, atmospheric circulation anomalies associated with regional sea ice variability show distinct patterns for the Atlantic and Pacific sectors consistent with heat and humidity transport from lower latitudes. In the future, under a high emission scenario, CESM-LE projects a gradual expansion of the footprint of the Pacific and Atlantic inflows, covering the whole Arctic Ocean by 2050-2079. This study highlights the combined importance of future Atlantification and Pacification of the Arctic Ocean and improves our understanding of internal climate variability which essential in order to predict future sea ice changes under anthropogenic warming.   </p><p> </p>


2011 ◽  
Vol 24 (5) ◽  
pp. 1451-1460 ◽  
Author(s):  
Irina Mahlstein ◽  
Reto Knutti

Abstract The Arctic climate is governed by complex interactions and feedback mechanisms between the atmosphere, ocean, and solar radiation. One of its characteristic features, the Arctic sea ice, is very vulnerable to anthropogenically caused warming. Production and melting of sea ice is influenced by several physical processes. The authors show that the northward ocean heat transport is an important factor in the simulation of the sea ice extent in the current general circulation models. Those models that transport more energy to the Arctic show a stronger future warming, in the Arctic as well as globally. Larger heat transport to the Arctic, in particular in the Barents Sea, reduces the sea ice cover in this area. More radiation is then absorbed during summer months and is radiated back to the atmosphere in winter months. This process leads to an increase in the surface temperature and therefore to a stronger polar amplification. The models that show a larger global warming agree better with the observed sea ice extent in the Arctic. In general, these models also have a higher spatial resolution. These results suggest that higher resolution and greater complexity are beneficial in simulating the processes relevant in the Arctic and that future warming in the high northern latitudes is likely to be near the upper range of model projections, consistent with recent evidence that many climate models underestimate Arctic sea ice decline.


2021 ◽  
Author(s):  
Jake Aylmer ◽  
David Ferreira ◽  
Daniel Feltham

<p>Estimating long-term projections of sea ice extent is a key part of understanding the possible future climate state. This is hampered by uncertainties within and across comprehensive climate models, and the relative importance and nature of contributing factors are not fully understood. Here, we investigate the role of ocean and atmospheric forcing on sea ice on multidecadal time scales.</p><p>Pre-industrial control simulations of 19 CMIP6 models are analysed. Sea ice extent is negatively correlated with ocean heat transport (OHT), and positively correlated with atmospheric heat (moist-static energy) transport (AHT), in both hemispheres. In most models, increased OHT into the Arctic enhances surface fluxes in the Atlantic sector just south of the sea ice edge, which in turn increases the AHT convergence at higher latitudes. In the southern ocean, increased OHT directly increases the mean ocean–ice heat flux while AHT plays no direct role. Sensitivities of the sea ice cover to OHT are consistent with predictions from an idealised energy balance model (EBM), which is fitted to each model in turn. This shows that the sensitivities are constrained by atmospheric radiation parameters and the mean surface temperature response, with no explicit dependence on ocean parameters. These results are a step towards quantifying the effect of ocean biases on sea ice uncertainty in climate projections.</p>


2021 ◽  
Author(s):  
Ulas Im ◽  
Kostas Tsigaridis ◽  
Gregory S. Faluvegi ◽  
Peter L. Langen ◽  
Joshua P. French ◽  
...  

<p>In order to study the future aerosol burdens and their radiative and climate impacts over the Arctic (>60 °N), future (2015-2050) simulations have been carried out using the GISS-E2.1 Earth system model. Different future anthrpogenic emission projections have been used from the Eclipse V6b and the Coupled Model Intercomparison Project Phase 6 (CMIP6) databases. Results showed that Arctic BC, OC and SO<sub>4</sub><sup>2-</sup> burdens decrease significantly in all simulations following the emission projections, with the CMIP6 ensemble showing larger reductions in Arctic aerosol burdens compared to the Eclipse ensemble. For the 2030-2050 period, both the Eclipse Current Legislation (CLE) and the Maximum Feasible Reduction (MFR) ensembles simulated an aerosol top of the atmosphere (TOA) forcing of -0.39±0.01 W m<sup>-2</sup>, of which -0.24±0.01 W m<sup>-2</sup> were attributed to the anthropogenic aerosols. The CMIP6 SSP3-7.0 scenario simulated a TOA aerosol forcing of -0.35 W m<sup>-2</sup> for the same period, while SSP1-2.6 and SSP2-4.5 scenarios simulated a slightly more negative TOA forcing (-0.40 W m<sup>-2</sup>), of which the anthropogenic aerosols accounted for -0.26 W m<sup>-2</sup>. The 2030-2050 mean surface air temperatures are projected to increase by 2.1 °C and 2.4 °C compared to the 1990-2010 mean temperature according to the Eclipse CLE and MFR ensembles, respectively, while the CMIP6 simulation calculated an increase of 1.9 °C (SSP1-2.6) to 2.2 °C (SSP3-7.0). Overall, results show that even the scenarios with largest emission reductions lead to similar impact on the future Arctic surface air temperatures compared to scenarios with smaller emission reductions, while scenarios with no or little mitigation leads to much larger sea-ice loss, implying that even though the magnitude of aerosol reductions lead to similar responses in surface air temperatures, high mitigation of aerosols are still necessary to limit sea-ice loss. </p>


2015 ◽  
Vol 112 (15) ◽  
pp. 4570-4575 ◽  
Author(s):  
Rong Zhang

Satellite observations reveal a substantial decline in September Arctic sea ice extent since 1979, which has played a leading role in the observed recent Arctic surface warming and has often been attributed, in large part, to the increase in greenhouse gases. However, the most rapid decline occurred during the recent global warming hiatus period. Previous studies are often focused on a single mechanism for changes and variations of summer Arctic sea ice extent, and many are based on short observational records. The key players for summer Arctic sea ice extent variability at multidecadal/centennial time scales and their contributions to the observed summer Arctic sea ice decline are not well understood. Here a multiple regression model is developed for the first time, to the author’s knowledge, to provide a framework to quantify the contributions of three key predictors (Atlantic/Pacific heat transport into the Arctic, and Arctic Dipole) to the internal low-frequency variability of Summer Arctic sea ice extent, using a 3,600-y-long control climate model simulation. The results suggest that changes in these key predictors could have contributed substantially to the observed summer Arctic sea ice decline. If the ocean heat transport into the Arctic were to weaken in the near future due to internal variability, there might be a hiatus in the decline of September Arctic sea ice. The modeling results also suggest that at multidecadal/centennial time scales, variations in the atmosphere heat transport across the Arctic Circle are forced by anticorrelated variations in the Atlantic heat transport into the Arctic.


2019 ◽  
Vol 10 (1) ◽  
pp. 121-133 ◽  
Author(s):  
Luis Gimeno-Sotelo ◽  
Raquel Nieto ◽  
Marta Vázquez ◽  
Luis Gimeno

Abstract. By considering the moisture transport for precipitation (MTP) for a target region to be the moisture that arrives in this region from its major moisture sources and which then results in precipitation in that region, we explore (i) whether the MTP from the main moisture sources for the Arctic region is linked with inter-annual fluctuations in the extent of Arctic sea ice superimposed on its decline and (ii) the role of extreme MTP events in the inter-daily change in the Arctic sea ice extent (SIE) when extreme MTP simultaneously arrives from the four main moisture regions that supply it. The results suggest (1) that ice melting at the scale of inter-annual fluctuations against the trend is favoured by an increase in moisture transport in summer, autumn, and winter and a decrease in spring and, (2) on a daily basis, extreme humidity transport increases the formation of ice in winter and decreases it in spring, summer, and autumn; in these three seasons extreme humidity transport therefore contributes to Arctic sea ice melting. These patterns differ sharply from that linked to the decline on a long-range scale, especially in summer when the opposite trend applies, as ice melt is favoured by a decrease in moisture transport for this season at this scale.


Author(s):  
Martin Solan ◽  
Ellie R. Ward ◽  
Christina L. Wood ◽  
Adam J. Reed ◽  
Laura J. Grange ◽  
...  

Arctic marine ecosystems are undergoing rapid correction in response to multiple expressions of climate change, but the consequences of altered biodiversity for the sequestration, transformation and storage of nutrients are poorly constrained. Here, we determine the bioturbation activity of sediment-dwelling invertebrate communities over two consecutive summers that contrasted in sea-ice extent along a transect intersecting the polar front. We find a clear separation in community composition at the polar front that marks a transition in the type and amount of bioturbation activity, and associated nutrient concentrations, sufficient to distinguish a southern high from a northern low. While patterns in community structure reflect proximity to arctic versus boreal conditions, our observations strongly suggest that faunal activity is moderated by seasonal variations in sea ice extent that influence food supply to the benthos. Our observations help visualize how a climate-driven reorganization of the Barents Sea benthic ecosystem may be expressed, and emphasize the rapidity with which an entire region could experience a functional transformation. As strong benthic-pelagic coupling is typical across most parts of the Arctic shelf, the response of these ecosystems to a changing climate will have important ramifications for ecosystem functioning and the trophic structure of the entire food web. This article is part of the theme issue ‘The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning'.


2017 ◽  
Author(s):  
Jun Ono ◽  
Hiroaki Tatebe ◽  
Yoshiki Komuro ◽  
Masato I. Nodzu ◽  
Masayoshi Ishii

Abstract. To assess the skill of predictions of the seasonal-to-interannual detrended sea ice extent in the Arctic Ocean (SIEAO) and to clarify the underlying physical processes, we conducted ensemble hindcasts, started on January 1st, April 1st, July 1st, and October 1st for each year from 1980 to 2011, for lead times of up three years, using the Model for Interdisciplinary Research on Climate (MIROC) version 5 initialized with the observed atmosphere and ocean anomalies and sea ice concentration. Significant skill is found for the winter months: the December SIEAO can be predicted up to 1 year ahead. This skill is attributed to the subsurface ocean heat content originating in the North Atlantic. The subsurface water flows into the Barents Sea from spring to fall and emerges at the surface in winter by vertical mixing, and eventually affects the sea ice variability there. Meanwhile, the September SIEAO predictions are skillful for lead times of up to 3 months, due to the persistence of sea ice in the Beaufort, Chukchi, and East Siberian Seas initialized in July, as suggested by previous studies.


Sign in / Sign up

Export Citation Format

Share Document