Detection of slow-moving landslides in large area using InSAR phase-gradients stacking and YOLOv3

Author(s):  
Lv Fu ◽  
Teng Wang

<p>Landslide is one of the major geohazards that endangers the human society and threatens the safety of life and properties. In recent years, attentions have been paid to the Synthetic Aperture Radar interferometry (InSAR) for landslide monitoring with many successful applications. However, it is still difficult to effectively and automatically identify slow-moving landslides distributed in a large area because of phase unwrapping errors, troposphere turbulence and vegetation cover. Here we propose a method combining phase-gradient stacking and the widely-used neural network for tiny object detection: You Only Look Once (YOLOv3) to detect slow-moving landslides from large-scale interferograms. Using the time-series Sentinel-1 SAR images acquired since 2016, we develop a burst-based, phase-gradient stacking algorithm to sum up phase gradients along the azimuth and range directions of short-temporal-baseline interferograms. The stacked phase gradients clearly present the characteristics of localized surface deformation, mainly caused by slow-moving landslides, avoiding the errors result of multiple phase unwrapping in time-series analysis and atmospheric effects. We then train the YOLOv3 network with the stacked phase-gradient maps of known landslides to achieve the quick and automatic landslide detection. We apply our method in the middle section of the Yalong River in mountainous area of western China, with an area of 180,000 km<sup>2</sup>. In addition to the slides that have been published in the inventory, we identify many more slow-moving landslides that cannot be detected by traditional time-series InSAR analysis methods. Our results demonstrate the potential usage of the proposed methods for slow-moving landslide detection in large area, which can be applied before the time-consuming time-series InSAR analysis.</p>

2020 ◽  
Vol 10 (16) ◽  
pp. 5469 ◽  
Author(s):  
Jan Blahůt ◽  
Jan Balek ◽  
Michal Eliaš ◽  
Stavros Meletlidis

This paper presents a methodological approach to the time-series analysis of movement monitoring data of a large slow-moving landslide. It combines different methods of data manipulation to decrease the subjectivity of a researcher and provides a fully quantitative approach for analyzing large amounts of data. The methodology was applied to 3D dilatometric data acquired from the giant San Andrés Landslide on El Hierro in the Canary Islands in the period from October 2013 to April 2019. The landslide is a creeping volcanic flank collapse showing a decrease of speed of movement during the monitoring period. Despite the fact that clear and unambiguous geological interpretations cannot be made, the analysis is capable of showing correlations of the changes of the movement with increased seismicity and, to some point, with precipitation. We consider this methodology being the first step in automatizing and increasing the objectivity of analysis of slow-moving landslide monitoring data.


2021 ◽  
Author(s):  
Fengming Hu ◽  
Ramon Hanssen ◽  
Pier Siebesma ◽  
Kevin Helfer

Atmospheric delay has a significant impact on synthetic aperture radar (SAR) interferometry, inducing spatial phase errors and decorrelation in extreme weather condition. For Low Earth Orbit (LEO) SAR missions, the atmosphere can be considered as being spatio-temporally frozen due to the short integration time. Geosynchronous (GEO) SAR missions, however, have short revisit times and extensive imaging coverage but with a longer integration time. As a result, GEOSAR interferograms can provide continuous deformation monitoring and integrated refractivity for weather forecasting. However, as the troposphere may vary significantly within the integration time, this may lead to a degradation during focusing and decorrelation of the InSAR pair. Here we simulate a time-series refractivity distribution with a high spatio-temporal resolution, for a fair-weather situation using an advanced Large Eddy Simulation (LES) model, to show the spatio-temporal variability of the troposphere on short time scales. Given GEO orbit parameters with different viewing angles along both azimuth and range directions, corresponding time-series of tropospheric interferograms are obtained based on the SAR geometry, and the impacts of different parameters are compared. Tropospheric delay is found to vary rapidly and a lead to phase gradient exceeding one cycle within a few minutes. Yet, for periods of less than ~15 minutes, a frozen-flow approximation may be successful to mitigate atmospheric decorrelation. Consequently, GEOSAR imaging should be iterative to compensate the atmospheric effects.


Agriculture ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 150 ◽  
Author(s):  
Yanfei Wei ◽  
Xinhua Tong ◽  
Gang Chen ◽  
Deqiang Liu ◽  
Zhenfeng Han

Sustainable agricultural practices necessitate accurate baseline data of crop types and their detailed spatial distribution. Compared with field surveys, remote sensing has demonstrated superior performance, offering spatially explicit crop distribution in a timely manner. Recent studies have taken advantage of remote sensing time series to capture the variation in plant phenology, inferring major crop types. However, such an approach was rarely used to extract detailed, multiple crop types spanning a large area, and the impact of topography has yet to be well analyzed in mountainous regions. This study aims to answer two questions in crop type extraction: (i) Is it feasible to accurately map multiple crop types over a large mountainous area with phenology-based modeling? (ii) What are the effects of topography in such modeling? To answer the questions, phenological metrics were extracted from MODIS (Moderate Resolution Imaging Spectroradiometer) satellite time series, and the random forests classifier was used to map 12 crop types in South China (236,700 km2), featuring a subtropical monsoon climate and high topographic variation. Our study revealed promising results using MODIS EVI (Enhanced Vegetation Index) and NDVI (Normalized Difference Vegetation Index) time series, although EVI outperformed NDVI (overall accuracy: 85% versus 81%). The spectral and temporal metrics of plant phenology significantly contributed to crop identification, where the spectral information exhibited greater importance. The increase of slope led to a decrease in model accuracy in general. However, uniformly distributed tree plantations (e.g., tea-oil camellia, gum, and tea trees) being cultivated on large slopes (>15 degrees) achieved accuracies greater than 80%.


2017 ◽  
Vol 53 (10) ◽  
pp. 683-685 ◽  
Author(s):  
Tao Zhang ◽  
Xiaolei Lv ◽  
Jiang Qian ◽  
Jun Hong ◽  
Ye Yun

2021 ◽  
Vol 13 (11) ◽  
pp. 2174
Author(s):  
Lijian Shi ◽  
Sen Liu ◽  
Yingni Shi ◽  
Xue Ao ◽  
Bin Zou ◽  
...  

Polar sea ice affects atmospheric and ocean circulation and plays an important role in global climate change. Long time series sea ice concentrations (SIC) are an important parameter for climate research. This study presents an SIC retrieval algorithm based on brightness temperature (Tb) data from the FY3C Microwave Radiation Imager (MWRI) over the polar region. With the Tb data of Special Sensor Microwave Imager/Sounder (SSMIS) as a reference, monthly calibration models were established based on time–space matching and linear regression. After calibration, the correlation between the Tb of F17/SSMIS and FY3C/MWRI at different channels was improved. Then, SIC products over the Arctic and Antarctic in 2016–2019 were retrieved with the NASA team (NT) method. Atmospheric effects were reduced using two weather filters and a sea ice mask. A minimum ice concentration array used in the procedure reduced the land-to-ocean spillover effect. Compared with the SIC product of National Snow and Ice Data Center (NSIDC), the average relative difference of sea ice extent of the Arctic and Antarctic was found to be acceptable, with values of −0.27 ± 1.85 and 0.53 ± 1.50, respectively. To decrease the SIC error with fixed tie points (FTPs), the SIC was retrieved by the NT method with dynamic tie points (DTPs) based on the original Tb of FY3C/MWRI. The different SIC products were evaluated with ship observation data, synthetic aperture radar (SAR) sea ice cover products, and the Round Robin Data Package (RRDP). In comparison with the ship observation data, the SIC bias of FY3C with DTP is 4% and is much better than that of FY3C with FTP (9%). Evaluation results with SAR SIC data and closed ice data from RRDP show a similar trend between FY3C SIC with FTPs and FY3C SIC with DTPs. Using DTPs to present the Tb seasonal change of different types of sea ice improved the SIC accuracy, especially for the sea ice melting season. This study lays a foundation for the release of long time series operational SIC products with Chinese FY3 series satellites.


2014 ◽  
Vol 40 (3) ◽  
pp. 192-212 ◽  
Author(s):  
J. C. White ◽  
M. A. Wulder ◽  
G. W. Hobart ◽  
J. E. Luther ◽  
T. Hermosilla ◽  
...  

2020 ◽  
Vol 12 (22) ◽  
pp. 3756
Author(s):  
Wei Shi ◽  
Guan Chen ◽  
Xingmin Meng ◽  
Wanyu Jiang ◽  
Yan Chong ◽  
...  

Land subsidence is one of the major urban geological hazards, which seriously restricts the development of many cities in the world. As one of the major cities in China, Xi’an has also been experiencing a large area of land subsidence due to excessive exploitation of groundwater. Since the Heihe Water Transfer Project (HWTP) became fully operational in late 2003, the problem of subsidence has been restrained, but other issues, such as ground rebounds, have appeared, and the effect of the underground space utilization on land subsidence remains unsolved. The spatial-temporal pattern of land subsidence and rebound in Xi’an after HWTP and their possible cause have so far not been well understood. In this study, the evolutionary characteristics of land subsidence and rebound in Xi’an city from 2007–2019 was investigated using Small Baseline Subset Interferometric Synthetic Aperture Radar (SBAS-SAR) technology to process the Advanced Land Observing Satellite (ALOS) and Sentinel-1A SAR datasets, and their cause and the correlation with groundwater level changes and the underground space utilization were discussed. We found that the land subsidence rate in the study area slowed from 2007–2019, and the subsidence area shrank and gradually developed into three relatively independent and isolated subsidence areas primarily. Significant local rebound deformation up to 22 mm/y commenced in the groundwater recharge region during 2015–2019. The magnitude of local rebound was dominated by the rise in groundwater level due to HWTP, whereas tectonic faults and ground fissures control the range of subsidence and the uplift area. The influence of building load on surface deformation became increasingly evident and primarily manifested by slowing the subsidence reduction trend. Additionally, land subsidence caused by the disturbances during the subway construction period was stronger than that in the operational stage. Future land subsidence in Xi’an is predicted to be alleviated overall, and the areas of rebound deformation will continue increasing for a limited time. However, uneven settlement range may extend to the Qujiang and Xixian New District due to the rapid urban construction. Our results could provide a scientific basis for land subsidence hazard mitigation, underground space planning, and groundwater management in Xi’an or similar regions where severe ground subsidence was induced by rapid urbanization.


2021 ◽  
Vol 13 (22) ◽  
pp. 4579
Author(s):  
Dongdong Yang ◽  
Haijun Qiu ◽  
Yaru Zhu ◽  
Zijing Liu ◽  
Yanqian Pei ◽  
...  

Landslide processes are a consequence of the interactions between their triggers and the surrounding environment. Understanding the differences in landslide movement processes and characteristics can provide new insights for landslide prevention and mitigation. Three adjacent landslides characterized by different movement processes were triggered from August to September in 2018 in Hualong County, China. A combination of surface and subsurface characteristics illustrated that Xiongwa (XW) landslides 1 and 2 have deformed several times and exhibit significant heterogeneity, whereas the Xiashitang (XST) landslide is a typical retrogressive landslide, and its material has moved downslope along a shear surface. Time-series Interferometric Synthetic Aperture Radar (InSAR) and Differential InSAR (DInSAR) techniques were used to detect the displacement processes of these three landslides. The pre-failure displacement signals of a slow-moving landslide (the XST landslide) can be clearly revealed by using time-series InSAR. However, these sudden landslides, which are a typical catastrophic natural hazard across the globe, are easily ignored by time-series InSAR. We confirmed that effective antecedent precipitation played an important role in the three landslides’ occurrence. The deformation of an existing landslide itself can also trigger new adjacent landslides in this study. These findings indicate that landslide early warnings are still a challenge since landslide processes and mechanisms are complicated. We need to learn to live with natural disasters, and more relevant detection and field investigations should be conducted for landslide risk mitigation.


Sign in / Sign up

Export Citation Format

Share Document