Testing the impacts of wildfire on hydrological and sediment response using the OpenLISEM model

Author(s):  
Jinfeng Wu ◽  
João Pedro Nunes ◽  
Jantiene E. M. Baartman

<p>Wildfires have become a major concern to society in recent decades because increases in the number and severity of wildfires have negative effects on soil and water resources, especially in headwater areas. Models are typically applied to estimate the potential adverse effects of fire. However, few modeling studies have been conducted for meso-scale catchments, and only a fraction of these studies include transport and deposition of eroded material within the catchment or represent spatial erosion patterns. In this study, we firstly designed the procedure of event-based automatic calibration using PEST, parameters ensemble, and jack-knife cross-validation that is suitable for event-based OpenLISEM calibration and validation, especially in data-scarce burned areas. The calibrated and validated OpenLISEM proved capable of providing reasonable accurate predictions of hydrological responses and sediment yields in this burned catchment. Then the model was applied with design storms of six different return periods (0.2, 0.5, 1, 2, 5, and 10 years) to simulate and evaluate pre- and post-wildfire hydrological and erosion responses at the catchment scale. Our results show rainfall amount and intensity play a more important role than fire occurrence in the catchment water discharge and sediment yields, while fire occurrence is regarded as an important factor for peak water discharge, indicating that high post-fire hydro-sedimentary responses are frequently related to extreme rainfall events. The results also suggest a partial shift from flow to splash erosion after fire, especially for higher return periods, explained by a combination of higher splash erosion in burnt upstream areas with a limited sediment transport capacity of surface runoff, preventing flow erosion in downstream areas. In consequence, the pre-fire erosion risk in the croplands of this catchment is partly shifted to a post-fire erosion risk in upper slope forest and natural areas, especially for storms with lower return periods, although erosion risks in croplands are important both before and after fires. This is relevant, as a shift of sediment sources to burnt areas might lead to downstream contamination even if sediment yields remain small. These findings have significant implications to identify areas for post-wildfire stabilization and rehabilitation, which is particularly important given the predicted increase in the occurrence of fires and extreme rainfall events with climate change.</p>

2020 ◽  
Author(s):  
Bernhard Lucke

<p>Assessments of land degradation in arid and semi-arid regions frequently employ models calculating annual erosion rates from the size of sediment bodies, assuming grain-by-grain transport and constant processes of deposition. It is often attempted to connect historic sediment bodies to past land use and climate by correlations with demographic estimates and reconstructions of past precipitation averages. In addition, mass transport is often equalled with soil loss and fertility degradation, based on the idea that humus-rich topsoils store the greatest part of soil nutrients. However, such concepts are based on premises transferred from temperate regions, and their suitability for arid and semi-arid regions is questionable. For example, dryland soils usually contain very small amounts of organic matter, which means that their fertility is mostly a function of texture, and a limited loss of topsoil is rather irrelevant for agricultural productivity. Part of the sediments deposited in valleys come from soft, easily erodible rocks, which means that they reflect slope denudation and not soil erosion. As well, erosion-sedimentation processes do often not take place by continuous transport of single grains. This is illustrated with a valley fill in northern Jordan: sediments were deposited discontinuously, mainly by slumping and earth flows, and the largest parts of the fill accumulated in time frames of ~100 years during the two Little Ice Ages (6<sup>th</sup> and 14<sup>th</sup> century AD/CE). Due to a dominance of smectites, the clay-rich Red Mediterranean Soils in the vicinity shrink and form cracks during the dry period. Because of the cracks and underlying limestone karst, they can swallow strong rains without erosion risk. However, when water-saturated, soils expand and may move in slump flows. Soil-covered geoarchaeological features like a buried ancient cemetery illustrate that such viscous flows created new land surfaces, sealing cavities but not filling them. This suggests a major role of rare but intense rainfall events in erosion-deposition processes. Analogies with modern rainfalls, including record levels of precipitation during the winter 1991/1992, indicate that levels of soil moisture triggering similar slump flows have not been reached during times of modern rainfall monitoring. That ancient land use played a minor role for erosion is supported by intense surveys of archaeological material on fields surrounding the valley, which indicate that the periods of most intensive land use coincided with very limited sediment deposition. Concepts of land degradation in semi-arid and arid regions should be reconsidered, respecting the more irregular environmental setting, the specific soil properties, and traditional land use systems which evolved in constant adaptation to this environment. Rare but extreme rainfall events as potential main drivers of land degradation should be considered more: they are difficult to control or mitigate, but may increase due to climate change.</p>


Water ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 2828
Author(s):  
Manh Van Doi ◽  
Jongho Kim

Designing water infrastructure requires information about the magnitude and frequency of upcoming rainfall. A limited range of data offers just one of many realizations that occurred in the past or will occur in the future; thus, it cannot sufficiently explain climate internal variability (CIV). In this study, future relationships among rainfall intensity (RI), duration, and frequency (called the IDF curve) are established by addressing the CIV and tail characteristics with respect to frequency. Specifically, 100 ensembles of 30-year time series data were created to quantify that uncertainty. Then, the tail characteristics of future extreme rainfall events were investigated to determine whether they will remain similar to those in the present. From the RIs computed for control and future periods under two emission scenarios, following are the key results. Firstly, future RI will increase significantly for most locations, especially near the end of this century. Secondly, the spatial distributions and patterns indicate higher RI in coastal areas and lower RI for the central inland areas of South Korea, and those distributions are similar to those of the climatological mean (CM) and CIV. Thirdly, a straightforward way to reveal whether the tail characteristics of future extreme rainfall events are the same as those in the present is to inspect the slope value for the factor of change (FOC), mFOC. Fourthly, regionalizing with nearby values is very risky when investigating future changes in precipitation frequency estimates. Fifthly, the magnitude of uncertainty is large when the data length is short and gradually decreases as the data length increases for all return periods, but the uncertainty range becomes much greater as the return period becomes large. Lastly, inferring future changes in RI from the CM is feasible only for small return periods and at locations where mFOC is close to zero.


2020 ◽  
Author(s):  
Nadav Peleg ◽  
Chris Skinner ◽  
Simone Fatichi ◽  
Peter Molnar

<p>Spatial characteristics of extreme rainfall are expected to change with increasing temperatures. Extreme rainfall directly affects streamflow and sediment transport volumes and peaks, yet the effect of climate change on the small-scale spatial structure of extreme rainfall and subsequent impacts on hydrology and geomorphology remain largely unexplored. Motivated by this knowledge gap, we conducted a numerical experiment in which synthetic rainfall fields representing extreme rainfall events of two types, stratiform and convective, were simulated using a space-time rainfall generator model (AWE-GEN-2d). The rainfall fields were modified to follow different spatial rainfall scenarios, associated with increasing temperatures, and used as inputs into a landscape evolution model (CAESAR-Lisflood). We found that the response of the streamflow and sediment yields are highly sensitive to changes in total rainfall volume and to a lesser extent to changes in localized peak rainfall intensities. The morphological (erosion and sediment transport) components were found to be more sensitive to changes in rainfall spatial structure in comparison to the hydrological components, and more sensitive to convective rainfall than stratiform rainfall because of localized runoff generation and erosion production. In addition, we showed that assuming extreme rainfall events to intensify with increasing temperatures without introducing a change in the rainfall spatial structure might lead to over-estimation of future climate impacts on basin-wide hydro-geomorphology.</p>


MAUSAM ◽  
2022 ◽  
Vol 63 (3) ◽  
pp. 391-400
Author(s):  
MEHFOOZ ALI ◽  
SURINDER KAUR ◽  
S.B. TYAGI ◽  
U.P. SINGH

Short duration rainfall estimates and their intensities for different return periods are required for many purposes such as for designing flood for hydraulic structures, urban flooding etc. An attempt has been made in this paper to Model extreme rainfall events of Short Duration over Lower Yamuna Catchment. Annual extreme rainfall series and their intensities were analysed using EVI distribution for rainstorms of short duration of 5, 10, 15, 30, 45 & 60 minutes and various return periods have been computed. The Self recording rainguage (SRRGs) data for the period 1988-2009 over the Lower Yamuna Catchment (LYC) have been used in this study. It has been found that EVI distribution fits well, tested by Kolmogorov-Smirnov goodness of fit test at 5 % level of significance for each of the station.


Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1397 ◽  
Author(s):  
Óscar E. Coronado-Hernández ◽  
Ernesto Merlano-Sabalza ◽  
Zaid Díaz-Vergara ◽  
Jairo R. Coronado-Hernández

Frequency analysis of extreme events is used to estimate the maximum rainfall associated with different return periods and is used in planning hydraulic structures. When carrying out this type of analysis in engineering projects, the hydrological distributions that best fit the trend of maximum 24 h rainfall data are unknown. This study collected maximum 24 h rainfall records from 362 stations distributed throughout Colombia, with the goal of guiding hydraulic planners by suggesting the probability distributions they should use before beginning their analysis. The generalized extreme value (GEV) probability distribution, using the weighted moments method, presented the best fits of frequency analysis of maximum daily precipitation for various return periods for selected rainfall stations in Colombia.


2009 ◽  
Vol 48 (3) ◽  
pp. 502-516 ◽  
Author(s):  
Pao-Shin Chu ◽  
Xin Zhao ◽  
Ying Ruan ◽  
Melodie Grubbs

Abstract Heavy rainfall and the associated floods occur frequently in the Hawaiian Islands and have caused huge economic losses as well as social problems. Extreme rainfall events in this study are defined by three different methods based on 1) the mean annual number of days on which 24-h accumulation exceeds a given daily rainfall amount, 2) the value associated with a specific daily rainfall percentile, and 3) the annual maximum daily rainfall values associated with a specific return period. For estimating the statistics of return periods, the three-parameter generalized extreme value distribution is fit using the method of L-moments. Spatial patterns of heavy and very heavy rainfall events across the islands are mapped separately based on the aforementioned three methods. Among all islands, the pattern on the island of Hawaii is most distinguishable, with a high frequency of events along the eastern slopes of Mauna Kea and a low frequency of events on the western portion so that a sharp gradient in extreme events from east to west is prominent. On other islands, extreme rainfall events tend to occur locally, mainly on the windward slopes. A case is presented for estimating return periods given different rainfall intensity for a station in Upper Manoa, Oahu. For the Halloween flood in 2004, the estimated return period is approximately 27 yr, and its true value should be no less than 13 yr with 95% confidence as determined from the adjusted bootstrap resampling technique.


Extreme rainfall amount at various return periods is one of the key inputs in the design of various hydraulic structures. In order to reduce damages that may arise due to extreme rainfall, it is very important to estimate accurately by a suitable probability distribution. Gumbel and Gamma distributions are widely applied to fit the extreme rainfall events. In the present work, an attempt is made to find maximum rainfall that could occur at various return periods, (10, 20, 50, 75, 100 and 200 years) for Tiruchirappalli city located in India. The rainfall data starting from the year 1904 to 2010 is used to predict extreme rainfall. Akaike Information Criteria (AIC) and Bayesian information criteria (BIC) were employed to determine the best probability distribution for rainfall data belongs to Tiruchirappalli station.


2019 ◽  
Vol 1 (1) ◽  
pp. 33
Author(s):  
M Welly

Many people in Indonesia calculate design rainfall before calculating the design flooddischarge. The design rainfall with a certain return period will eventually be convertedinto a design flood discharge by combining it with the characteristics of the watershed.However, the lack of a network of rainfall recording stations makes many areas that arenot hydrologically measured (ungauged basin), so it is quite difficult to know thecharacteristics of rain in the area concerned. This study aims to analyze thecharacteristics of design rainfall in Lampung Province. The focus of the analysis is toinvestigate whether geographical factors influence the design rainfall that occurs in theparticular area. The data used in this study is daily rainfall data from 15 rainfallrecording stations spread in Lampung Province. The method of frequency analysis usedin this study is the Gumbel method. The research shows that the geographical location ofan area does not have significant effect on extreme rainfall events. The effect of risingearth temperatures due to natural exploitation by humans tends to be stronger as a causeof extreme events such as extreme rainfall.Keywords: Influence, geographical, factors, extreme, rainfall.


2013 ◽  
Vol 31 (3) ◽  
pp. 413 ◽  
Author(s):  
André Becker Nunes ◽  
Gilson Carlos Da Silva

ABSTRACT. The eastern region of Santa Catarina State (Brazil) has an important history of natural disasters due to extreme rainfall events. Floods and landslides are enhancedby local features such as orography and urbanization: the replacement of natural surface coverage causing more surface runoff and, hence, flooding. Thus, studies of this type of events – which directly influence life in the towns – take on increasing importance. This work makes a quantitative analysis of occurrences of extreme rainfall events in the eastern and northern regions of Santa Catarina State in the last 60 years, through individual analysis, considering the history of floods ineach selected town, as well as an estimate through to the end of century following regional climate modeling. A positive linear trend, in most of the towns studied, was observed in the results, indicating greater frequency of these events in recent decades, and the HadRM3P climate model shows a heterogeneous increase of events for all towns in the period from 2071 to 2100.Keywords: floods, climate modeling, linear trend. RESUMO. A região leste do Estado de Santa Catarina tem um importante histórico de desastres naturais ocasionados por eventos extremos de precipitação. Inundações e deslizamentos de terra são potencializados pelo relevo acidentado e pela urbanização das cidades da região: a vegetação nativa vem sendo removida acarretando um maior escoamento superficial e, consequentemente, em inundações. Desta forma, torna-se de suma importância os estudos acerca deste tipo de evento que influencia diretamente a sociedade em geral. Neste trabalho é realizada uma análise quantitativa do número de eventos severos de precipitação ocorridos nas regiões leste e norte de Santa Catarina dos últimos 60 anos, por meio de uma análise pontual, considerandoo histórico de inundações de cada cidade selecionada, além de uma projeção para o fim do século de acordo com modelagem climática regional. Na análise dos resultados observou-se uma tendência linear positiva na maioria das cidades, indicando uma maior frequência deste tipo de evento nas últimas décadas, e o modelo climático HadRM3P mostra um aumento heterogêneo no número de eventos para todas as cidades no período de 2071 a 2100.Palavras-chave: inundações, modelagem climática, tendência linear.


Sign in / Sign up

Export Citation Format

Share Document