Reparametrizing rainfall generators with convective-permitting models to generate high-resolution rainfall for climate impact studies

Author(s):  
Yuting Chen ◽  
Athanasios Paschalis ◽  
Nadav Peleg ◽  
Christian Onof

<p>A high-resolution rainfall data at a km and sub-hourly scales provides a powerful tool for hydrological risk assessment in the current and the future climate. Global circulation models or regional circulation models generally provide projections at much coarser space-time resolutions of 10-100 kilometres and daily to monthly. In the recent decade, convection-permitting models (CPM) have been developed and enable the projection at a kilometre and sub-hourly scales. CPMs, due to their very high computational demand, are still limited to a small number of ensemble simulations. This limits their skill in hydrology, where quantification of extremes and their variability is essential for risk assessment and design. In this project, we propose the combined use of CPMs with stochastic rainfall generators to simulate ensemble of climate change at hydrologically relevant scales.</p><p>To achieve this, we used the STREAP space-time stochastic rainfall generator, a 1 km resolution composite rain radar data and a 2.2km CPM dataset from the UK Met Office. For the mid-land region of the UK, we parameterised STREAP for the present climate using rainfall observations. CPM simulations were used to derive the change of STREAP parameters with a changing climate. These parameters describe the change in weather patterns, the rainfall intensification, and changes in the structure of rainfall. Our results show that by combining a physics-based model and a stochastic weather generator we can simulate robust ensemble of rainfall at a minimal computational cost while preserving all physical attributes from climate change projections.</p>

2014 ◽  
Vol 18 (1) ◽  
pp. 67-84 ◽  
Author(s):  
A. A. Oubeidillah ◽  
S.-C. Kao ◽  
M. Ashfaq ◽  
B. S. Naz ◽  
G. Tootle

Abstract. To extend geographical coverage, refine spatial resolution, and improve modeling efficiency, a computation- and data-intensive effort was conducted to organize a comprehensive hydrologic data set with post-calibrated model parameters for hydro-climate impact assessment. Several key inputs for hydrologic simulation – including meteorologic forcings, soil, land class, vegetation, and elevation – were collected from multiple best-available data sources and organized for 2107 hydrologic subbasins (8-digit hydrologic units, HUC8s) in the conterminous US at refined 1/24° (~4 km) spatial resolution. Using high-performance computing for intensive model calibration, a high-resolution parameter data set was prepared for the macro-scale variable infiltration capacity (VIC) hydrologic model. The VIC simulation was driven by Daymet daily meteorological forcing and was calibrated against US Geological Survey (USGS) WaterWatch monthly runoff observations for each HUC8. The results showed that this new parameter data set may help reasonably simulate runoff at most US HUC8 subbasins. Based on this exhaustive calibration effort, it is now possible to accurately estimate the resources required for further model improvement across the entire conterminous US. We anticipate that through this hydrologic parameter data set, the repeated effort of fundamental data processing can be lessened, so that research efforts can emphasize the more challenging task of assessing climate change impacts. The pre-organized model parameter data set will be provided to interested parties to support further hydro-climate impact assessment.


2020 ◽  
Vol 12 (4) ◽  
pp. 3097-3112
Author(s):  
Emily Collier ◽  
Thomas Mölg

Abstract. Climate impact assessments require information about climate change at regional and ideally also local scales. In dendroecological studies, this information has traditionally been obtained using statistical methods, which preclude the linkage of local climate changes to large-scale drivers in a process-based way. As part of recent efforts to investigate the impact of climate change on forest ecosystems in Bavaria, Germany, we developed a high-resolution atmospheric modelling dataset, BAYWRF, for this region over the thirty-year period of September 1987 to August 2018. The atmospheric model employed in this study, the Weather Research and Forecasting (WRF) model, was configured with two nested domains of 7.5 and 1.5 km grid spacing centred over Bavaria and forced at the outer lateral boundaries by ERA5 reanalysis data. Using an extensive network of observational data, we evaluate (i) the impact of using grid analysis nudging for a single-year simulation of the period of September 2017 to August 2018 and (ii) the full BAYWRF dataset generated using nudging. The evaluation shows that the model represents variability in near-surface meteorological conditions generally well, although there are both seasonal and spatial biases in the dataset that interested users should take into account. BAYWRF provides a unique and valuable tool for investigating climate change in Bavaria with high interdisciplinary relevance. Data from the finest-resolution WRF domain are available for download at daily temporal resolution from a public repository at the Open Science Framework (Collier, 2020; https://doi.org/10.17605/OSF.IO/AQ58B).


Author(s):  
H. G. Orr ◽  
M. Ekström ◽  
M. B. Charlton ◽  
K. L. Peat ◽  
H. J. Fowler

The UK Climate Change Act requires the Environment Agency to report the risks it faces from climate change and actions taken to address these. Derived information from projections is critical to understanding likely impacts in water management. In 2019, the UK published an ensemble of high-resolution model simulations. The UKCP Local (2.2 km) projections can resolve smaller scale physical processes that determine rainfall and other variables at subdaily time-scales with the potential to provide new insights into extreme events, storm runoff and drainage management. However, simulations also need to inform adaptation. The challenge ahead is to identify and provide derived products without the need for further analysis by decision-makers. These include a wider evaluation of uncertainty, narratives about rainfall change across the projections and bias-corrected datasets. Future flood maps, peak rainfall estimates, uplift factors and future design storm profiles also need detailed guidance to support their use. Central government support is justified in the provision of up-to-date impacts information to inform flood risk management, given the large risks and exposure of all sectors. The further development of projections would benefit from greater focus and earlier scoping with industry representatives, operational tool developers and end users. This article is part of a discussion meeting issue ‘Intensification of short-duration rainfall extremes and implications for flash flood risks’.


Erdkunde ◽  
2011 ◽  
Vol 65 (2) ◽  
pp. 137-150 ◽  
Author(s):  
Stephanie Margarete Thomas ◽  
Dominik Fischer ◽  
Stefanie Fleischmann ◽  
Torsten Bittner ◽  
Carl Beierkuhnlein

2020 ◽  
Author(s):  
Daniel Cotterill ◽  
Peter Stott ◽  
Elizabeth Kendon

<p>We investigate the attribution of the flooding in Northern England that saw at least 500 homes flooded and over 1000 properties evacuated in flooded areas in 2019. This occurred during the wettest Autumn on record in some areas and also contained some very high daily rainfall totals. In the light of climate change, it is expected that intense rainfall events are to become more intense as a result of increased global average temperatures and the Clausius-Clapeyron relationship, but here we investigate quantitatively how much climate change has increased the risk of such an event to date.</p><p>We use results from the 2.2km convective permitting high resolution local UK Climate Projections (UKCP) and observations to show that more intense rainfall events may already be occurring in Autumn in the UK. This work shows using this high resolution UKCP data that a heavy rainfall event exceeding 50mm in one day in Autumn was 33-40% more likely to occur in 2019 than 1985. Further work that looks at the HadGEM3-A simulations shows that these heavy rainfall days are more likely to occur in a climate impacted by human activity than one with just natural climate forcings.</p>


Author(s):  
R. F. Warren ◽  
R. L. Wilby ◽  
K. Brown ◽  
P. Watkiss ◽  
Richard A. Betts ◽  
...  

A wide range of climate vulnerability and risk assessments have been implemented using different approaches at different scales, some with a broad multi-sectoral scope and others focused on single risks or sectors. This paper describes the novel approach to vulnerability and risk assessment which was designed and put into practice in the United Kingdom's Second Climate Change Risk Assessment (CCRA2) so as to build upon its earlier assessment (CCRA1). First, we summarize and critique the CCRA1 approach, and second describe the steps taken in the CCRA2 approach in detail, providing examples of how each was applied in practice. Novel elements of the approach include assessment of both present day and future vulnerability, a focus on the urgency of adaptation action, and a structure focused around systems of receptors rather than conventional sectors. Both stakeholders and reviewers generally regarded the approach as successful in providing advice on current risks and future opportunities to the UK from climate change, and the fulfilment of statutory duty. The need for a well-supported and open suite of impact indicators going forward is highlighted. This article is part of the theme issue ‘Advances in risk assessment for climate change adaptation policy'.


Sign in / Sign up

Export Citation Format

Share Document