Bounding surface models in site response analysis: comparison with the equivalent linear approach

Author(s):  
Tony Fierro ◽  
Massimina Castiglia ◽  
Filippo Santucci de Magistris

<p>A reliable prediction of the response of a soil column subjected to earthquake excitation is a basic although challenging achievement in geotechnical earthquake engineering problems.</p><p>A critical step is the analysis type selection. Nowadays, the equivalent linear approach is extremely widespread, mainly for its low computational demand and for its suitability to simulate soil behaviour up to the medium-strain level. However, this approach approximates the hysteresis loop exhibited by soils during a load cycle through an average shear modulus and damping ratio. Consequently, the nonlinear approach would more adequately describe the real soil behaviour, but it requires a large amount of data to be correctly calibrated that is not always available.</p><p>To address the differences by using these approaches, a comparison between the surficial acceleration response spectra of a single-layered 20 m-thick soil column of Messina Gravels (gravel and sand with occasionally silty levels) underlain by a rigid bedrock, subjected to strong-motion recordings, is presented.</p><p>The software STRATA was used for the equivalent linear analyses. The nonlinear site response analyses were performed with the OpenSees framework, while the bounding surface-based SANISAND constitutive model was selected to reproduce the soil nonlinear behaviour.</p><p>A single column in 3D space with periodic boundaries to simulate 1D conditions was considered. The input excitation was applied at the base nodes of the column and the parameters to be assigned to the model were obtained from Gorini (2019).</p><p>For both analysis methods, linear elastic analyses were performed by applying a 0.3g sine sweep with frequencies up to 30 Hz. The obtained results were interpreted in terms of acceleration transfer function and a satisfactory congruence was achieved.</p><p>The non-linear behaviour of the soil was triggered by applying three accelerograms from strong-motion events (Kobe, Kocaeli and Chi-Chi), downloaded from the PEER database. As results, for periods higher than 1.5 s neglectable amplification effects are observed, so a good accordance is highlighted between equivalent linear and nonlinear analyses. For the period range 0.3-1.5 s, amplification occurs but it is still correctly caught by both the approaches. Strong differences are, instead, observed in the lower periods range, up to 0.3 s, where the equivalent linear approach returns essentially similar spectral accelerations as those of the input motions, while nonlinear analysis highlights amplification and eventually deamplification effects.</p><p>In conclusion, it appears that the soil non-linearity should be carefully evaluated for high-seismicity areas because the equivalent linear method tends to underestimate the response, assuming a stiffer behaviour. This was clear for a single-layered soil column and it becomes certainly more complex for stratified soil deposits. To this end, the non-linear approach appears more appropriate to avoid underpredictions of the input motion to be applied for design purposes, but a high effort should be made to properly characterize the soil for the calibration of the selected nonlinear model as well.</p>

Author(s):  
John D. Thornley ◽  
Utpal Dutta ◽  
John Douglas ◽  
Zhaohui (Joey) Yang

ABSTRACT Anchorage, Alaska, is a natural laboratory for recording strong ground motions from a variety of earthquake sources. The city is situated in a tectonic region that includes the interface and intraslab earthquakes related to the subducting Pacific plate and crustal earthquakes from the upper North American plate. The generalized inversion technique was used with a local rock reference station to develop site response at >20 strong-motion stations in Anchorage. A database of 94 events recorded at these sites from 2005 to 2019 was also compiled and processed to compare their site response with those in the 2018 Mw 7.1 event (main event). The database is divided into three datasets, including 75 events prior to the main event, the main event, and 19 aftershocks. The stations were subdivided into the site classes defined in the National Earthquake Hazards Reduction Program based on estimated average shear-wave velocity in of the upper 30 m (VS30), and site-response results from the datasets were compared. Nonlinear site response was observed at class D and DE sites (VS30 of 215–300 and 150–215  m/s, respectively) but not at class CD and C sites (VS30 of 300–440 and 440–640  m/s, respectively). The relationship of peak ground acceleration versus peak ground velocity divided by VS30 (shear-strain proxy) was shown to further support the observation that sites with lower VS30 experienced nonlinear site response.


2020 ◽  
Vol 72 (1) ◽  
Author(s):  
Yi-Ying Wen ◽  
Yin-Tung Yen ◽  
Chun-Hsiang Kuo ◽  
Kuo‐En Ching

Abstract We used near-field strong-motion data to investigate the complex combination of source effect and site response for two recent disastrous earthquakes in southwest Taiwan. We estimated strong-motion generation areas (SMGAs) of 2.8 km × 2.8 km and 6.0 km × 4.2 km in a frequency band of 0.4–10 Hz for the 2010 Jiashian and 2016 Meinong earthquakes, respectively. The high-stress drops of 26.2 and 17.0 MPa for these two buried events were potentially related to the small dimension and deep rupture. Our results revealed that both earthquakes exhibited westward rupture directivity, whereas the 2016 Meinong event exhibited a stronger directivity effect because of the consistency between the propagation and slip directions. The localized high peak ground velocity (PGV) patch and the nonlinear site response could be attributed to the soft sediment with high pore fluid pressure and low-velocity structure beneath this region. However, the greater seismic moment and closer faulting location to the thick-mudstone-layer region for the 2016 Meinong event reinforced the strong ground shaking and serious damage over the broad area. This implies that this thick-mudstone-layer region in southern Taiwan plays a crucial role in earthquake response, and an investigation of characteristic site effects should be conducted for seismic hazard mitigation. Graphic abstract


2016 ◽  
Vol 32 (3) ◽  
pp. 1867-1887 ◽  
Author(s):  
Brian Carlton ◽  
Kohji Tokimatsu

We compared the results of equivalent linear (ELA) and nonlinear site response analyses (NLA) and found that the differences between the values of the peak ground acceleration ( PGA), peak ground velocity ( PGV), Arias intensity ( I a), significant duration ( D5–75), and response spectrum for periods between 0.025 s and 2 s predicted by each method are non-negligible for maximum shear strain values predicted by ELA ( γ max, ELA) greater than 0.04% to 1.0%. As γ max, ELA increases, ELA in general predict smaller shear strain and D5–75 values, and larger PGA, PGV, I a, mean period, and response spectral values for periods less than 0.1 s and periods near the natural site period than NLA. To help researchers and practitioners decide when to use ELA and/or NLA, we developed a model to estimate γ max, ELA before conducting a site response analysis.


Sign in / Sign up

Export Citation Format

Share Document