Timing matters – the importance of “when” droughts and temperature anomalies occur in the Iberian Peninsula

Author(s):  
Tarek EI-Madany ◽  
Arnaud Carrara ◽  
Gerardo Moreno ◽  
M. Pilar Martin ◽  
Javier Pacheco-Labrador ◽  
...  

<p>Mediterranean ecosystems and their different vegetation types are adapted to the annual cycle between wet and cool winter periods and dry and hot summers. Within this cycle, productivity is strongly driven by water availability but also temperature. With climate change, the Mediterranean area, and especially the Iberian Peninsula is expected to receive less precipitation. Future projections of temperature distributions of the Iberian Peninsula predict shifts toward a higher mean (+2 °C) and maximum (+4 °C) temperature. As a result, an increase in drought frequency and duration can be assumed. The response of the vegetation, especially with respect to the different components of the carbon cycle [net ecosystem exchange (NEE) and its components gross primary productivity (GPP) and ecosystem respiration (Reco)] and plant stress are still not well understood for these ecosystems. One of the biggest unknowns is the impact of the timing of temperature and precipitation anomalies on the carbon balances of these ecosystems.</p><p>We present results from different studies focusing on the Iberian Peninsula showing the importance of the timing of temperature and water availability anomalies and how they influence the carbon balance of those ecosystems. While the impact of a strong compound heat and drought event during the summer period had only a very small impact on the carbon balance of the ecosystem a positive temperature anomaly during the winter period of 2015/16 caused a strong increase in ecosystem productivity. The differences in the ecosystem responses are a result of the different ecosystem conditions and limitations. During summer the analyzed ecosystems are already under conditions of strong water limitation and reduced ecosystem productivity (senesced grass layer and stressed trees) and thus the response to the compound event was low. While during winter, large parts of the Iberian Peninsula are temperature limited, and increased temperatures relieved this limitation and increased LAI i.e. fraction of absorbed photosynthetic active radiation. On the other hand, the timing of precipitation, that controls the water availability in the soil during the spring and autumn periods have a large impact on the annual carbon balance of these ecosystems as they can reduce or increase the growing season length, and thus the carbon sequestration of these ecosystems. A recent study indicates that the impact of warm winters is not only increasing GPP but also Reco with important memory effects (i.e. increase of Reco later in the season). As a result, winter warming might lead to increased carbon uptake during winter but leads to a reduction in net carbon uptake for the whole year. Given the predictions of warming winters in the Mediterranean areas, this might cause more implications for the carbon balance as compared to summer heatwaves and droughts.</p>

Forests ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 547 ◽  
Author(s):  
Inês Vieira ◽  
Ana Russo ◽  
Ricardo M. Trigo

The Mediterranean region is characterized by the frequent occurrence of summer wildfires, representing an environmental and socioeconomic burden. Some Mediterranean countries (or provinces) are particularly prone to large fires, namely Portugal, Galicia (Spain), Greece, and southern France. Additionally, the Mediterranean basin corresponds to a major hotspot of climate change, and anthropogenic warming is expected to increase the total burned area due to fires in Mediterranean Europe. Here, we propose to classify summer large fires for fifty-four provinces of the Iberian Peninsula according to their local-scale weather conditions and fire danger weather conditions. A composite analysis was used to investigate the impact of local and regional climate drivers at different timescales, and to identify distinct climatologies associated with the occurrence of large fires. Cluster analysis was also used to identify a limited set of fire weather types, each characterized by a combination of meteorological conditions. For each of the provinces, two significant fire weather types were identified—one dominated by high positive temperature anomalies and negative humidity anomalies, and the other by intense zonal wind anomalies with two distinct subtypes in the Iberian Peninsula., allowing for the identification of three distinct regions.


2021 ◽  
Author(s):  
Alba de la Vara ◽  
William Cabos ◽  
Dmitry V. Sein ◽  
Claas Teichmann ◽  
Daniela Jacob

AbstractIn this work we use a regional atmosphere–ocean coupled model (RAOCM) and its stand-alone atmospheric component to gain insight into the impact of atmosphere–ocean coupling on the climate change signal over the Iberian Peninsula (IP). The IP climate is influenced by both the Atlantic Ocean and the Mediterranean sea. Complex interactions with the orography take place there and high-resolution models are required to realistically reproduce its current and future climate. We find that under the RCP8.5 scenario, the generalized 2-m air temperature (T2M) increase by the end of the twenty-first century (2070–2099) in the atmospheric-only simulation is tempered by the coupling. The impact of coupling is specially seen in summer, when the warming is stronger. Precipitation shows regionally-dependent changes in winter, whilst a drier climate is found in summer. The coupling generally reduces the magnitude of the changes. Differences in T2M and precipitation between the coupled and uncoupled simulations are caused by changes in the Atlantic large-scale circulation and in the Mediterranean Sea. Additionally, the differences in projected changes of T2M and precipitation with the RAOCM under the RCP8.5 and RCP4.5 scenarios are tackled. Results show that in winter and summer T2M increases less and precipitation changes are of a smaller magnitude with the RCP4.5. Whilst in summer changes present a similar regional distribution in both runs, in winter there are some differences in the NW of the IP due to differences in the North Atlantic circulation. The differences in the climate change signal from the RAOCM and the driving Global Coupled Model show that regionalization has an effect in terms of higher resolution over the land and ocean.


2012 ◽  
Vol 12 (10) ◽  
pp. 3123-3137 ◽  
Author(s):  
C. M. Gouveia ◽  
A. Bastos ◽  
R. M. Trigo ◽  
C. C. DaCamara

Abstract. The present work aims to study the combined effect of drought and large wildfires in the Iberian Peninsula relying on remotely sensed data of vegetation dynamics and leaf moisture content, in particular monthly NDVI, NDWI and NDDI time series from 1999–2009, derived from VEGETATION dataset. The impact of the exceptional 2004/2005 drought on vegetation was assessed for vegetation recovering from the extraordinary fire season of 2003 and on the conditions that contributed to the onsetting of the fire season of 2005. Drought severity was estimated by the cumulative negative effect on photosynthetic activity (NDVI) and vegetation dryness (NDDI), with about 2/3 of Iberian Peninsula presenting vegetative stress and low water availability conditions, in spring and early summer of 2005. Furthermore, NDDI has shown to be very useful to assess drought, since it combines information on vegetation and water conditions. Moreover, we show that besides looking at the inter-annual variability of NDVI and NDDI, it is useful to evaluate intra-annual changes (δNDVI and δNDDI), as indicators of change in vegetation greenness, allowing a detailed picture of the ability of the different land-cover types to resist to short-term dry conditions. In order to assess drought impact on post-fire regeneration, recovery times were evaluated by a mono-parametric model based on NDVI data and values corresponding to drought months were set to no value. Drought has shown to delay recovery times for several months in all the selected scars from 2003. The analysis of vegetation dynamics and fire selectivity in 2005 suggests that fires tended to occur in pixels presenting lower vegetative and water stress conditions during spring and early summer months. Additionally, pre-fire vegetation dynamics, in particular vegetation density and water availability during spring and early summer, has shown to influence significantly the levels of fire damage. These results stress the role of fuel availability in fire occurrence and impact on the Iberian Peninsula.


Author(s):  
A. Lorrio ◽  
J. Sanmartí

This chapter summarizes current knowledge of the human geography of the Iberian peninsula during the Iron Age. It compares and contrasts different sources (Greek and Latin texts, coins minted by indigenous peoples, and archaeological evidence) to recreate the palaeoethnological panorama of the region and reconstruct the historical processes that led to its formation, including the impact of the Phoenicians and Greeks. This analysis indicates the existence of a linguistically non-Indo-European area, mainly the Mediterranean and Atlantic coastal regions between the Pyrenees and the mouth of the Guadiana, and an Indo-European one in the centre of the peninsula and along the greater part of the Atlantic coast. Ethnic groups of varying size and political importance are attested in both areas. Population growth and iron metallurgy played a crucial role in the formation of this human reality, together with the development of urbanization, which started in the Mediterranean coastal areas and progressively spread.


2020 ◽  
Vol 41 (1) ◽  
pp. 49-62
Author(s):  
Josep Francesc Bisbal-Chinesta ◽  
Karin Tamar ◽  
Ángel Gálvez ◽  
Luís Albero ◽  
Pablo Vicent-Castelló ◽  
...  

Abstract Human movements in the regions surrounding the Mediterranean Sea have caused a great impact in the composition of terrestrial fauna due to the introductions of several allochthonous species, intentionally or not. Reptiles are one of the groups where this anthropic impact is most evident, owing to the extensive intra-Mediterranean dispersals of recent chronologies. Chalcides ocellatus is a widespread skink with a natural distribution that covers almost the entire Mediterranean Basin. Two hypotheses have been proposed to explain its origin: natural dispersions and human translocations. Previous molecular data suggest the occurrence of a recent dispersal phenomenon across the Mediterranean Sea. In this study we present the first record of this species in the Iberian Peninsula, in Serra del Molar (South-east Spain). We combined molecular analyses and archaeological records to study the origin of this population. The molecular results indicate that the population is phylogenetically closely related to specimens from north-eastern Egypt and southern Red Sea. We suggest that the species arrived at the Iberian Peninsula most likely through human-mediated dispersal by using the trade routes. Between the Iron to Middle Ages, even now, the region surrounding Serra del Molar has been the destination of human groups and commercial goods of Egyptian origins, in which Chalcides ocellatus could have arrived as stowaways. The regional geomorphological evolution would have restricted its expansion out of Serra del Molar. These findings provide new data about the impact of human movements on faunal introductions and present new information relating to mechanisms of long-distance translocations.


2020 ◽  
Author(s):  
Vincent Humphrey ◽  
Alexis Berg ◽  
Philippe Ciais ◽  
Christian Frankenberg ◽  
Pierre Gentine ◽  
...  

<p>Obtaining reliable estimates of the sensitivity of carbon fluxes to water availability, temperature and vapor pressure deficit is essential for constraining climate-carbon feedbacks in Earth system models. However, these variables often co-vary because of soil moisture – atmosphere feedbacks, especially in situations where they are most susceptible to strongly impact ecosystems (e.g. during droughts and heatwaves), leading to potentially conflicting results when sensitivities are assessed independently. In particular, there is conflicting evidence on the role of temperature versus water availability in explaining these variations at the global scale.</p><p>Here, we show that accounting for the effect of soil moisture – atmosphere coupling resolves much of this controversy. Using idealized climate model experiments, we find that variability in soil moisture accounts for 90% of the inter-annual variability in land carbon uptake, mainly through its impact on photosynthesis. Without SM variability, the inter-annual variability (IAV) of land carbon uptake is almost eliminated. We show that the effects of soil moisture can be decomposed into 1) a direct ecosystem response to soil water stress and 2) a dominant indirect response to extreme temperature and vapor pressure deficit triggered by land-atmosphere coupling and controlled by anomalous soil moisture conditions.  Importantly, these two mechanisms do not necessarily have the same spatial extent, and some regions can be more sensitive to indirect effects than to direct effects.</p><p>These two pathways explain why results from coupled climate models suggest a dominant role of soil moisture, while uncoupled simulations diagnose a strong temperature effect. These findings have strong implications for offline model sensitivity analyses as well as field scale manipulation experiments (i.e. rainfall exclusion studies) where the impact of drought on carbon exchange and vegetation activity is often studied by intervening solely on soil moisture content with little consideration of the physical feedbacks on temperature and air humidity occurring in natural conditions.</p>


2020 ◽  
Author(s):  
Inês Vieira ◽  
Ana Russo ◽  
Ricardo M. Trigo

<p>The Mediterranean region is characterized by frequent summer wildfires, which represent an environmental and socioeconomic burden [1]. Some Mediterranean countries (or provinces) are particularly prone to Large Fires (LF), namely Portugal, Galicia (Spain), Greece, and southern France [1,2]. Moreover, the Mediterranean basin corresponds to a major hotspot of climate change, and anthropogenic warming is expected to increase the total burned area due to wildfires in Iberian Peninsula (IP) [3].</p><p>Here, we propose to classify summer LF (June-September) for fifty-four provinces of the IIP according to their local-scale weather conditions (i.e. temperature, relative humidity, wind speed) and to fire danger weather conditions as measured by two fire weather indices (Duff Moisture Code and Drought Code). A cluster analysis was applied to identify a limited set of Fire Weather Types (FWT), each characterized by a combination of meteorological conditions leading to a better understanding of the relationship between meteorological drivers and fire occurrence. For each of the provinces, two significant FWT were identified with different characteristics, one dominated by high positive temperature anomalies and negative humidity anomalies (FWT1), and the other by intense zonal wind anomalies (FWT2) with two distinct subtypes in Iberia (FWT2_E and FWT2_W). Consequently, three distinct regions in the IP are identified: 1) dominated by FWT1, which is responsible for the largest amount of area burned in most of central-West provinces of Iberia; 2) the regions where the FWT2_E, associated with east winds is predominant, which are concentrated in the Northwest regions of the IP and the 3) regions where second subtype dominates, related with west winds (FWT2_W) in the easternmost provinces of the peninsula. Additionally, it was possible to verify that for each of the three regions the influence of the variables under study varies at different timescales. We reinforce the importance of studying the problem associated with LF for regions where similar conditions were verified regardless national borders.</p><p> </p><p>[1] Trigo, R. M., Sousa, P. M., Pereira, M. G., Rasilla, D., & Gouveia, C. M. (2013). “Modelling wildfire activity in Iberia with different atmospheric circulation weather types”. International Journal of Climatology 36(7), 2761–2778. https://doi.org/10.1002/joc.3749.</p><p>[2] Ruffault, J., Moron, V., Trigo, R. M., & Curt, T. (2016). “Objective identification of multiple large fire climatologies: An application to a Mediterranean ecosystem”. Environmental Research Letters 11(7). https://doi.org/10.1088/1748-9326/11/7/075006.</p><p>[3] Sousa, P. M., Trigo, R. M., Pereira, M. G., Bedia, J., & Gutiérrez, J. M. (2015).”Different approaches to model future burnt area in the Iberian Peninsula”. Agricultural and Forest Meteorology 202, 11–25. https://doi.org/10.1016/j.agrformet.2014.11.018.</p><p> </p><p><strong>Acknowledgements:</strong> This work was supported by national funds through FCT (Fundação para a Ciência e a Tecnologia, Portugal) under project IMPECAF (PTDC/CTA-CLI/28902/2017). The authors also thank Miguel M. Pinto for extracting the ERA-Interim reanalysis, the MSG and the FWI data used in this study.</p>


2011 ◽  
Vol 8 (6) ◽  
pp. 1667-1678 ◽  
Author(s):  
W.-J. Zhang ◽  
H.-M. Wang ◽  
F.-T. Yang ◽  
Y.-H. Yi ◽  
X.-F. Wen ◽  
...  

Abstract. The impact of air temperature in early growing season on the carbon sequestration of a subtropical coniferous plantation was discussed through analyzing the eddy flux observations at Qianyanzhou (QYZ) site in southern China from 2003 to 2008. This site experienced two cold early growing seasons (with temperature anomalies of 2–5 °C) in 2005 and 2008, and a severe summer drought in 2003. Results indicated that the low air temperature from January to March was the major factor controlling the inter-annual variations in net carbon uptake at this site, rather than the previously thought summer drought. The accumulative air temperature from January to February showed high correlation (R2=0.970, p<0.001) with the annual net ecosystem production (NEP). This was due to the controls of early-month temperature on the plant phenology developing and the growing season length at this subtropical site. The cold spring greatly shortened the growing season length and therefore reduced the carbon uptake period. The eddy flux observations showed a carbon loss of 4.04 g C m−2 per growing-season day at this coniferous forest site. On the other hand, the summer drought also reduced the net carbon uptake strength because the photosynthesis was more sensitive to water deficit stress than the ecosystem respiration. However, the impact of summer drought occurred within a relatively shorter period and the carbon sequestration went back to the normal level once the drought was relieved.


2011 ◽  
Vol 8 (1) ◽  
pp. 1411-1444
Author(s):  
W.-J. Zhang ◽  
H.-M. Wang ◽  
F.-T. Yang ◽  
Y.-H. Yi ◽  
X.-F. Wen ◽  
...  

Abstract. The impact of air temperature in early months on the carbon sequestration of a subtropical coniferous plantation was discussed by analyzing the eddy flux observations at Qianyanzhou (QYZ) site located in southern China from 2003 to 2008. This site experienced two cold early growing seasons (with temperature anomalies of 2–5° C) in 2005 and 2008, and also a severe summer drought in 2003. Results indicated that the low air temperature from January to March was the major factor controlling the inter-annual variations in net carbon uptake at this site, rather than the previously thought summer drought. The accumulative air temperature from January to February showed high correlation (R2 = 0.970, p < 0.001) with the annual net ecosystem production (NEP). This was due to the controls of early-months temperature on the plant phenology developing and the growing season length at this subtropical site. The cold spring greatly shortened the growing season length and therefore reduced the carbon uptake period. The eddy flux observations showed a carbon loss of 4.04 g C m−2 per growing-season day at this coniferous forest site. On the other hand, the summer drought also reduced the net carbon uptake strength because the photosynthesis was more sensitive to water deficit stress than the ecosystem respiration. However, the impact of summer drought occurred within a relatively shorter period and the carbon sequestration went back to the normal level once the drought was relieved.


Sign in / Sign up

Export Citation Format

Share Document