Conflicting drivers of land carbon uptake variability reconciled by land-atmosphere coupling

Author(s):  
Vincent Humphrey ◽  
Alexis Berg ◽  
Philippe Ciais ◽  
Christian Frankenberg ◽  
Pierre Gentine ◽  
...  

<p>Obtaining reliable estimates of the sensitivity of carbon fluxes to water availability, temperature and vapor pressure deficit is essential for constraining climate-carbon feedbacks in Earth system models. However, these variables often co-vary because of soil moisture – atmosphere feedbacks, especially in situations where they are most susceptible to strongly impact ecosystems (e.g. during droughts and heatwaves), leading to potentially conflicting results when sensitivities are assessed independently. In particular, there is conflicting evidence on the role of temperature versus water availability in explaining these variations at the global scale.</p><p>Here, we show that accounting for the effect of soil moisture – atmosphere coupling resolves much of this controversy. Using idealized climate model experiments, we find that variability in soil moisture accounts for 90% of the inter-annual variability in land carbon uptake, mainly through its impact on photosynthesis. Without SM variability, the inter-annual variability (IAV) of land carbon uptake is almost eliminated. We show that the effects of soil moisture can be decomposed into 1) a direct ecosystem response to soil water stress and 2) a dominant indirect response to extreme temperature and vapor pressure deficit triggered by land-atmosphere coupling and controlled by anomalous soil moisture conditions.  Importantly, these two mechanisms do not necessarily have the same spatial extent, and some regions can be more sensitive to indirect effects than to direct effects.</p><p>These two pathways explain why results from coupled climate models suggest a dominant role of soil moisture, while uncoupled simulations diagnose a strong temperature effect. These findings have strong implications for offline model sensitivity analyses as well as field scale manipulation experiments (i.e. rainfall exclusion studies) where the impact of drought on carbon exchange and vegetation activity is often studied by intervening solely on soil moisture content with little consideration of the physical feedbacks on temperature and air humidity occurring in natural conditions.</p>

Water ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 105
Author(s):  
Argelia E. Rascón-Ramos ◽  
Martín Martínez-Salvador ◽  
Gabriel Sosa-Pérez ◽  
Federico Villarreal-Guerrero ◽  
Alfredo Pinedo-Alvarez ◽  
...  

Understanding soil moisture behavior in semi-dry forests is essential for evaluating the impact of forest management on water availability. The objective of the study was to analyze soil moisture based in storm observations in three micro-catchments (0.19, 0.20, and 0.27 ha) with similar tree densities, and subject to different thinning intensities in a semi-dry forest in Chihuahua, Mexico. Vegetation, soil characteristics, precipitation, and volumetric water content were measured before thinning (2018), and after 0%, 40%, and 80% thinning for each micro-catchment (2019). Soil moisture was low and relatively similar among the three micro-catchments in 2018 (mean = 8.5%), and only large rainfall events (>30 mm) increased soil moisture significantly (29–52%). After thinning, soil moisture was higher and significantly different among the micro-catchments only during small rainfall events (<10 mm), while a difference was not noted during large events. The difference before–after during small rainfall events was not significant for the control (0% thinning); whereas 40% and 80% thinning increased soil moisture significantly by 40% and 53%, respectively. Knowledge of the response of soil moisture as a result of thinning and rainfall characteristics has important implications, especially for evaluating the impact of forest management on water availability.


Land ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 15 ◽  
Author(s):  
Sabastine Ugbaje ◽  
Thomas Bishop

Vegetation activity in many parts of Africa is constrained by dynamics in the hydrologic cycle. Using satellite products, the relative importance of soil moisture, rainfall, and terrestrial water storage (TWS) on vegetation greenness seasonality and anomaly over Africa were assessed for the period between 2003 and 2015. The possible delayed response of vegetation to water availability was considered by including 0–6 and 12 months of the hydrological variables lagged in time prior to the vegetation greenness observations. Except in the drylands, the relationship between vegetation greenness seasonality and the hydrological measures was generally strong across Africa. Contrarily, anomalies in vegetation greenness were generally less coupled to anomalies in water availability, except in some parts of eastern and southern Africa where a moderate relationship was evident. Soil moisture was the most important variable driving vegetation greenness in more than 50% of the areas studied, followed by rainfall when seasonality was considered, and by TWS when the monthly anomalies were used. Soil moisture and TWS were generally concurrent or lagged vegetation by 1 month, whereas precipitation lagged vegetation by 1–2 months. Overall, the results underscore the pre-eminence of soil moisture as an indicator of vegetation greenness among satellite measured hydrological variables.


2019 ◽  
Vol 116 (38) ◽  
pp. 18848-18853 ◽  
Author(s):  
Sha Zhou ◽  
A. Park Williams ◽  
Alexis M. Berg ◽  
Benjamin I. Cook ◽  
Yao Zhang ◽  
...  

Compound extremes such as cooccurring soil drought (low soil moisture) and atmospheric aridity (high vapor pressure deficit) can be disastrous for natural and societal systems. Soil drought and atmospheric aridity are 2 main physiological stressors driving widespread vegetation mortality and reduced terrestrial carbon uptake. Here, we empirically demonstrate that strong negative coupling between soil moisture and vapor pressure deficit occurs globally, indicating high probability of cooccurring soil drought and atmospheric aridity. Using the Global Land Atmosphere Coupling Experiment (GLACE)-CMIP5 experiment, we further show that concurrent soil drought and atmospheric aridity are greatly exacerbated by land–atmosphere feedbacks. The feedback of soil drought on the atmosphere is largely responsible for enabling atmospheric aridity extremes. In addition, the soil moisture–precipitation feedback acts to amplify precipitation and soil moisture deficits in most regions. CMIP5 models further show that the frequency of concurrent soil drought and atmospheric aridity enhanced by land–atmosphere feedbacks is projected to increase in the 21st century. Importantly, land–atmosphere feedbacks will greatly increase the intensity of both soil drought and atmospheric aridity beyond that expected from changes in mean climate alone.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Laibao Liu ◽  
Lukas Gudmundsson ◽  
Mathias Hauser ◽  
Dahe Qin ◽  
Shuangcheng Li ◽  
...  

Abstract Dryness stress can limit vegetation growth and is often characterized by low soil moisture (SM) and high atmospheric water demand (vapor pressure deficit, VPD). However, the relative role of SM and VPD in limiting ecosystem production remains debated and is difficult to disentangle, as SM and VPD are coupled through land-atmosphere interactions, hindering the ability to predict ecosystem responses to dryness. Here, we combine satellite observations of solar-induced fluorescence with estimates of SM and VPD and show that SM is the dominant driver of dryness stress on ecosystem production across more than 70% of vegetated land areas with valid data. Moreover, after accounting for SM-VPD coupling, VPD effects on ecosystem production are much smaller across large areas. We also find that SM stress is strongest in semi-arid ecosystems. Our results clarify a longstanding question and open new avenues for improving models to allow a better management of drought risk.


2021 ◽  
Vol 8 ◽  
Author(s):  
Kuan-Ying Li ◽  
Mei-Chia Chou ◽  
Renin Chang ◽  
Hei-Tung Yip ◽  
Yao-Min Hung ◽  
...  

Objective: Our purpose was to investigate whether people with a previous human papillomavirus (HPV) infection were associated with an increased risk of Bell's palsy (BP).Methods: By using Taiwan population-based data, patients aged &gt; 18 years with HPV infection (n = 22,260) from 2000 to 2012 were enrolled and compared with control subjects who had never been diagnosed with an HPV infection at a 1:4 ratio matched by sex, age, index date, and co-morbidities (n = 89,040). The index date was the first date of HPV diagnosis. All the patients were tracked until the occurrence of BP. Cox proportional hazards regression was applied to estimate the hazard ratios (HRs) for the development of BP in both groups.Results: The HPV group had 1.25 [95% confidence interval (CI) = 1.03–1.51] times higher risk of BP compared with the non-HPV group after adjusting for sex, age, and co-morbidities. The association of HPV and BP was significant in the sensitivity analyses. In the subgroup analysis, the impact of HPV infection on the risk of BP was more pronounced in the elderly &gt; 50 years [adjusted hazard ratio (aHR) =1.86; 95% CI = 1.37–2.52], hypertension (aHR = 1.65; 95% CI = 1.17–2.31), and chronic obstructive pulmonary disease (aHR = 2.14, 95% CI 1.333.43) subgroups.Conclusions: Patients with HPV infection have a higher risk of subsequent BP compared with non-HPV patients. More rigorous studies are needed to confirm if and how specific HPV genotypes are associated with BP and the possible role of vaccines in disease prevention.


Sign in / Sign up

Export Citation Format

Share Document