Riverscape-scale airborne TIR assessment of weirs and riparian cover effects on lowland river temperature 

Author(s):  
Baptiste Marteau ◽  
André Chandesris ◽  
Flavie Cernesson ◽  
Kristell Michel ◽  
Lise Vaudor ◽  
...  

<p><span>The development of Airborne Infrared Thermal sensing (TIR) is an example of how technological advancement</span><span>s</span><span> and the field that they focus on have fostered one another. The pace at which global change is occurring has fed the demand for better understanding of the thermal behaviour of rivers. In turn, the improvement of remote sensing and data processing techniques has provided researchers and managers with new tools to apprehend such aspects at ever larger scales. Still, recent studies have mostly focussed on rivers showing little human alteration, with a particular interest on groundwater–surface water interactions. Lowland streams are scarcely considered when it comes to the study of temperature despite their widespread occurrence, their relatively high degree of disturbance and the risks that they face in the light of temperature rising following climate change. Some of these streams already display critically high maximum summer temperatures and their state is likely to worsen in the future, putting all compartments of biota at risk.<br></span></p><p><span>The aims of this project were twofold. We first tested the applicability of airborne TIR to study lowland, slow-flowing stream reaches draining agricultural catchments, some of which being particularly narrow and sinuous. We then sought to understand the role of different environmental factors, observed in such context, on driving river temperature during the warmest days of the year. A number of anthropogenic actions such as clear-cutting of riparian trees, stream rectification and the construction of weirs are likely to influence the longitudinal temperature profile of such streams. By choosing rivers with no or limited groundwater inputs, we were able to quantify the relative role of each of the three tested factors and identify stream sections showing critically high maximum temperature over the summer.</span></p><p><span>A final step was proposed to upscale these results in order to identify sections of streams showing high risks of reaching critically high summer temperature at a regional network scale. To do so, we used a combination of high resolution land-cover data, digital elevation models and other existing databases (e.g. national inventory of weirs). Identification of the risks in relation with the relative contribution of the different factors is key to process-based river management. This type of output is valuable to river basin managers and decision makers as it can be used to implement targeted restoration initiatives or remediation actions in areas where these have higher chances of being effective.</span></p>

2010 ◽  
Vol 62 (6) ◽  
pp. 1327-1334 ◽  
Author(s):  
E. Kurzbaum ◽  
Y. Zimmels ◽  
F. Kirzhner ◽  
R. Armon

Analysis of a low organic load constructed wetland (CW) system was performed in order to understand the relative role of its various components contribution in phenol removal (100 mg/L) under controlled plant biomass/gravel/water experimental ratios (50 g/450 g/100 mL). The results [expressed as phenol50/time (hours) required to remove 50% of the initial phenol concentration] showed that the highest phenol removal occurred by combined biofilms from roots and gravel attached (phenol50 = 19), followed by gravel biofilm (phenol50 = 105) and planktonic (suspended in water) bacteria (phenol50 = >200). An in depth analysis revealed that plants contribution alone (antibiotics sterilized) was minor (phenol50 = >89) while roots supported biofilm resulted in a significant phenol removal (phenol50 = 15). Therefore in this type of CW, the main phenol removal active fraction could be attributed to plant roots' biofilm bacteria.


2007 ◽  
Vol 7 (4) ◽  
pp. 10043-10063 ◽  
Author(s):  
H. Yang ◽  
Y. Gao

Abstract. Aeolian dust provides the major micronutrient of soluble Fe to organisms in certain regions of the global ocean. In this study, we conduct numerical experiments using the MOZART-2 atmospheric chemistry transport model to simulate the global distribution of soluble Fe flux and Fe solubility. One of the mechanisms behind the hypothesis of acid mobilization of Fe in the atmosphere is that the coating of acidic gases changes dust from hydrophobic to hydrophilic, a prerequisite of Fe mobilization. We therefore include HNO3, SO2 and sulfate (SO42−) as dust transformation agents in the model. General agreement in Fe solubility within a factor of 2 is achieved between model and observations. The total flux of soluble Fe to the world ocean is estimated to be 731–924×109 g yr−1, and the average Fe solubility is 6.4–8.0%. Wet deposition contributes over 80% to total soluble Fe flux to most of the world oceans. Special attention is paid to the relative role of HNO3 versus SO2 and sulfate. We demonstrate that coating by HNO3 produces over 36% of soluble Fe fluxes compared to that by SO2 and sulfate combined in every major oceanic basin. Given present trends in the emissions of NOx and SO2, the relative contribution of HNO3 to Fe mobilization may get even larger in the future.


2019 ◽  
Author(s):  
Clément Rougeux ◽  
Martin Laporte ◽  
Pierre-Alexandre Gagnaire ◽  
Louis Bernatchez

ABSTRACTRepeated adaptive divergence in replicates of phenotypic diversification offers a propitious context to identify the molecular bases associated to adaptive divergence. A currently hotly debated topic pertains to the relative role of genomic vs. epigenomic variation in shaping patterns of phenotypic variation at the gene expression level. Here, we combined genomic, epigenomic and transcriptomic information from 64 individuals in order to quantify the relative role of SNPs and DNA methylation variation in the repeated evolution of four limnetic-benthic whitefish species pairs from Europe and North America. We first found evidence for 149 convergent differentially methylated regions (DMRs) between species across continents, which significantly influenced levels of gene expression. Hyper-methylated DMRs in the limnetic species were globally associated to an expression repression relatively to benthic species, and inversely. Furthermore, we identified 108 convergent genetic variants (eQTLs) associated to gene expression differences between species. Gene expression differences were more pronounced in genes harbouring eQTL compared to those associated with DMRs, thus revealing a greater effect of eQTLs on gene expression. Multivariate analyses allowed partitioning the relative contribution of epi-/genomic changes and their association to gene expression variation. Most of the gene expression variation was significantly explained by genomic (4.1%) and putatively genomic-epigenomic interactive variation (46.7%), while “pure” epigenomic variation explained marginally 2.3% of the gene expression variation across continents. This study provides a rare qualitative and quantitative documentation of the relative role of genomic, DNA methylation and their interaction in shaping patterns of convergent gene expression during the process of ecological speciation.


Author(s):  
Elisa M. Trucco ◽  
Gabriel L. Schlomer ◽  
Brian M. Hicks

Approximately 48–66% of the variation in alcohol use disorders is heritable. This chapter provides an overview of the genetic influences that contribute to alcohol use disorder within a developmental perspective. Namely, risk for problematic alcohol use is framed as a function of age-related changes in the relative contribution of genetic and environmental factors and an end state of developmental processes. This chapter discusses the role of development in the association between genes and the environment on risk for alcohol use disorder. Designs used to identify genetic factors relevant to problematic alcohol use are discussed. Studies examining developmental pathways to alcohol use disorder with a focus on endophenotypes and intermediate phenotypes are reviewed. Finally, areas for further investigation are offered.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1812
Author(s):  
Karol Augustowski ◽  
Józef Kukulak

The rate of bank retreat was measured using erosion pins on the alluvial banks of the rivers in the Podhale region (the boundary zone between Central and Outer Carpathians) during the hydrological year 2013/2014. During the winter half-year (November–April), the bank retreat was mainly caused by processes related to the freezing and thawing of the ground (swelling, creep, downfall). During the summer half-year (May–October), fluvial processes and mass movements such as lateral erosion, washing out, and sliding predominated. The share of fluvial processes in the total annual amount of bank retreat (71 cm on average) was 4 times greater than that of the frost phenomena. Erosion on bank surfaces by frost phenomena during the cold half-year was greatest (up to 38 cm) on the upper parts of banks composed of fine-grained alluvium, while fluvial erosion during the summer half-year (exceeding 80 cm) mostly affected the lower parts of the banks, composed of gravel. The precise calculation of the relative role of frost phenomena in the annual balance of bank erosion was precluded at some stations by the loss of erosion pins in the summer flood.


2002 ◽  
Vol 751 ◽  
Author(s):  
Qinglei Wang ◽  
Guoda D. Lian ◽  
Elizabeth C. Dickey

ABSTRACTSolute segregation to grain boundaries is a fundamental phenomenon in polycrystalline metal-oxide electroceramics that has enormous implications for the macroscopic dielectric behavior of the materials. This paper presents a systematic study of solute segregation in a model dielectric, titanium dioxide. We investigate the relative role of the electrostatic versus strain energy driving forces for segregation by studying yttrium-doped specimens. Through analytical transmission electron microscopy studies, we quantitatively determine the segregation behavior of the material. The measured Gibbsian interfacial excesses are compared to thermodynamic predictions.


Sign in / Sign up

Export Citation Format

Share Document