TOMOREF operator as a tool to improve weather forecasts

Author(s):  
Natalia Hanna ◽  
Estera Trzcina ◽  
Maciej Kryza ◽  
Witold Rohm

<p>The numerical weather model starts from the initial state of the Earth's atmosphere in a given place and time. The initial state is created by blending the previous forecast runs (first-guess), together with observations from different platforms. The better the initial state, the better the forecast; hence, it is worthy to combine new observation types. The GNSS tomography technique, developed in recent years, provides a 3-D field of humidity in the troposphere. This technique shows positive results in the monitoring of severe weather events. However, to assimilate the tomographic outputs to the numerical weather model, the proper observation operator needs to be built.</p><p>This study demonstrates the TOMOREF operator dedicated to the assimilation of the GNSS tomography‐derived 3‐D fields of wet refractivity in a Weather Research and Forecasting (WRF) Data Assimilation (DA) system. The new tool has been tested based on wet refractivity fields derived during a very intense precipitation event. The results were validated using radiosonde observations, synoptic data, ERA5 reanalysis, and radar data. In the presented experiment, a positive impact of the GNSS tomography data assimilation on the forecast of relative humidity (RH) was noticed (an improvement of root‐mean‐square error up to 0.5%). Moreover, within 1 hour after assimilation, the GNSS data reduced the bias of precipitation up to 0.1 mm. Additionally, the assimilation of GNSS tomography data had more influence on the WRF model than the Zenith Total Delay (ZTD) observations, which confirms the potential of the GNSS tomography data for weather forecasting.</p>

2019 ◽  
Vol 20 (3) ◽  
pp. 431-445 ◽  
Author(s):  
Xinxuan Zhang ◽  
Emmanouil N. Anagnostou

Abstract The study evaluated a numerical weather model (WRF)-based satellite precipitation adjustment technique with 81 heavy precipitation events that occurred in three tropical mountainous regions (Colombia, Peru, and Taiwan). The technique was applied on two widely used near-real-time global satellite precipitation products—the National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center morphing technique (CMORPH) and the Global Satellite Mapping of Precipitation project (GSMaP)—for each precipitation event. The WRF-adjusted satellite products along with the near-real-time and gauge-adjusted satellite products as well as the WRF simulation were evaluated by independent gauge networks at daily scale and event total scale. Results show that the near-real-time precipitation products exhibited severe underestimation relative to the gauge observations over the three tropical mountainous regions. The underestimation tended to be larger for higher rainfall accumulations. The WRF-based satellite adjustment provided considerable improvements to the near-real-time CMORPH and GSMaP products. Moreover, error metrics show that WRF-adjusted satellite products outperformed the gauge-adjusted counterparts for most of the events. The effectiveness of WRF-based satellite adjustment varied with events of different physical processes. Thus, the technique applied on satellite precipitation estimates of these events may exhibit inconsistencies in the bias correction.


2020 ◽  
Author(s):  
Natalia Hanna ◽  
Estera Trzcina ◽  
Maciej Kryza ◽  
Witold Rohm

<p>The amount of water vapor in the atmosphere is highly variable and not easy to measure. One of the methods to provide reliable information about the amount and distribution of the humidity in the troposphere is GNSS (Global Navigation Satellite Systems) tomography. The GNSS tomography uses the observations of signal delays between satellites and ground-based receivers over the field covered by a GNSS network. This method enables deriving the 3D distribution of wet refractivity at a low cost in all weather conditions, with high temporal and spatial resolution.</p><p>The first applications of the GNSS tomography data in the Weather Research and Forecasting Data Assimilation (WRF DA) system were performed by the adaptation of the GPSREF observation operator. In this study, we present a new tool, namely the TOMOREF observation operator, which consists of three parts: forward, tangent linear, and adjoint operators. As the input data in the assimilation process, the wet refractivity fields from two tomographic models (TUW, WUELS) are used. The analysis is carried out for a 2-week long period (May 29 – June 14, 2013) in Central Europe when severe weather conditions occurred, including heavy precipitation events. The data assimilation results are verified against radiosonde observations, synoptic data, and ERA5 reanalysis. Moreover, the performance of the TOMOREF and GPSREF operators is examined. For the forecasts of relative humidity (RH) at a pressure level of 300 hPa, the implementation of the TOMOREF operator vanishes the negative impact caused by the GPSREF operator. Additionally, the improvement of the root mean square error of the forecasts of RH up to 0.5% is observed. Comparing to the assimilation of Zenith Total Delay observations, the application of the tomographic data has overall a greater influence on the WRF model. Consequently, the GNSS tomography data can be valuable in operational weather forecasting.</p>


2019 ◽  
Vol 11 (13) ◽  
pp. 1616 ◽  
Author(s):  
Zhilu Wu ◽  
Jungang Wang ◽  
Yanxiong Liu ◽  
Xiufeng He ◽  
Yang Liu ◽  
...  

Haiyang-2A (HY-2A) has been working in-flight for over seven years, and the accuracy of HY-2A calibration microwave radiometer (CMR) data is extremely important for the wet troposphere delay correction (WTC) in sea surface height (SSH) determination. We present a comprehensive evaluation of the HY-2A CMR observation using the numerical weather model (NWM) for all the data available period from October 2011 to February 2018, including the WTC and the precipitable water vapor (PWV). The ERA(ECMWF Re-Analysis)-Interim products from European Centre for Medium-Range Weather Forecasts (ECMWF) are used for the validation of HY-2A WTC and PWV products. In general, a global agreement of root-mean-square (RMS) of 2.3 cm in WTC and 3.6 mm in PWV are demonstrated between HY-2A observation and ERA-Interim products. Systematic biases are revealed where before 2014 there was a positive WTC/PWV bias and after that, a negative one. Spatially, HY-2A CMR products show a larger bias in polar regions compared with mid-latitude regions and tropical regions and agree better in the Antarctic than in the Arctic with NWM. Moreover, HY-2A CMR products have larger biases in the coastal area, which are all caused by the brightness temperature (TB) contamination from land or sea ice. Temporally, the WTC/PWV biases increase from October 2011 to March 2014 with a systematic bias over 1 cm in WTC and 2 mm in PWV, and the maximum RMS values of 4.62 cm in WTC and 7.61 mm in PWV occur in August 2013, which is because of the unsuitable retrieval coefficients and systematic TB measurements biases from 37 GHz band. After April 2014, the TB bias is corrected, HY-2A CMR products agree very well with NWM from April 2014 to May 2017 with the average RMS of 1.68 cm in WTC and 2.65 mm in PWV. However, since June 2017, TB measurements from the 18.7 GHz band become unstable, which led to the huge differences between HY-2A CMR products and the NWM with an average RMS of 2.62 cm in WTC and 4.33 mm in PWV. HY-2A CMR shows high accuracy when three bands work normally and further calibration for HY-2A CMR is in urgent need. Furtherly, 137 global coastal radiosonde stations were used to validate HY-2A CMR. The validation based on radiosonde data shows the same variation trend in time of HY-2A CMR compared to the results from ECMWF, which verifies the results from ECMWF.


2015 ◽  
Vol 53 (9) ◽  
pp. 5269-5279 ◽  
Author(s):  
Xiaofeng Li ◽  
Xiaofeng Yang ◽  
Weizhong Zheng ◽  
Jun A. Zhang ◽  
Leonard J. Pietrafesa ◽  
...  

Author(s):  
L. CUCURULL ◽  
S. P. F. CASEY

AbstractAs global data assimilation systems continue to evolve, Observing System Simulation Experiments (OSSEs) need to be updated to accurately quantify the impact of proposed observing technologies in weather forecasting. Earlier OSSEs with radio occultation (RO) observations have been updated and the impact of the originally proposed Constellation Observing Satellites for Meteorology, Ionosphere, and Climate-2 (COSMIC-2) mission, with a high-inclination and low-inclination component, has been investigated by using the operational data assimilation system at NOAA and a 1-dimensional bending angle RO forward operator. It is found that the impact of the low-inclination component of the originally planned COSMIC-2 mission (now officially named COSMIC-2) has significantly increased as compared to earlier studies, and significant positive impact is now found globally in terms of mass and wind fields. These are encouraging results as COSMIC-2 was successfully launched in June 2019 and data have been recently released to operational weather centers. Earlier findings remain valid indicating that globally distributed RO observations are more important to improve weather prediction globally than a denser sampling of the tropical latitudes. Overall, the benefits reported here from assimilating RO soundings are much more significant than the impacts found in previous OSSEs. This is largely attributed to changes in the data assimilation and forecast system and less to the more advanced 1-dimensional forward operator chosen for the assimilation of RO observations.


2021 ◽  
Vol 5 (1) ◽  
pp. 41-50
Author(s):  
Deffi Munadiyat Putri ◽  
◽  
Aries Kristianto ◽  

Flood is one of the most common hydro-meteorological disasters. Bengawan Solo is one of the watersheds in Indonesia that also hit by this disaster. This study discusses the flood disaster in the Bengawan Solo area in early March 2019. The purpose of this study is to conduct a discharge simulation using numerical weather model Global Forecast System (GFS) data through Integrated Flood Analysis System (IFAS) so it is possible to predict discharge in the future. There are three types of numerical weather model GFS data that have been downscale using weather research and forecasting model which differentiated based on spin-up time. The numerical weather model product is then used as rainfall data input for IFAS simulation. Based on the analysis, the flood discharge simulation using an 84-hour spin-up time has a satisfactory performance in describing the change in discharge with respect to time. This happens because numerical weather models will be better at quantifying processes that occur on a meso scale with spatial scale of 10 to 1000 km. The result of this research shows that it is possible to predict river discharge up to 84 hours before the disaster so this is can support the mitigation process for hydrometeorological disasters.


Sign in / Sign up

Export Citation Format

Share Document