Using glaciers to identify, monitor, and predict volcanic activity

Author(s):  
Michael Martin ◽  
Iestyn Barr ◽  
Benjamin Edwards ◽  
Elias Symeonakis ◽  
Matteo Spagnolo

<p>Many (about 250) volcanoes worldwide are occupied by glaciers. Often glaciers are regarded as problematic for volcano monitoring, since glacier ice potentially masks evidence of volcanic activity. The most devastating volcanic eruptions of the last 100 years involved volcano-glacier interactions. The 1985 eruption of Nevado del Ruiz killed 23000 people, and the 2010 eruption of Eyjafjallajökull led to the closure of many European airports. Therefore, it is imperative to minimize these impacts on society by improving methods for monitoring of glacier-clad volcanoes. Amongst several methods, optical satellite remote sensing techniques are perhaps most auspicious, since they frequently have a relatively high temporal and spatial resolution, and are mostly freely available. They often clearly show the effects of volcanic activity on glaciers, including ice cauldron formation, ice fracturing and glacier terminus changes potentially due to subglacial melt or subglacial dome growth. This study has the objective to link pre-, syn- and post-eruption glacier behaviour to the type and timing of volcanic activity, and to develop a satellite based predictive tool for monitoring future eruptions. Despite several studies that link volcanic activity and changing glacier behaviour, the potential of using the latter to predict the former has yet to be systematically tested. Our approach is to observe how glaciers responded to past volcanic events using mostly, but not exclusively optical satellite imagery, and to build a database of examples for potential automated detection and forecasting on a global scale.</p>

2020 ◽  
Author(s):  
Michael Martin ◽  
Iestyn Barr ◽  
Benjamin Edwards ◽  
Elias Symeonakis ◽  
Matteo Spagnolo

<p>Many (about 250) volcanoes worldwide are occupied by glaciers. This can be problematic for volcano monitoring because glacier ice potentially masks evidence of volcanic activity. Both the deadliest and most costly volcanic eruptions of the last 100 years involved volcano-glacier interactions. The 1985 eruption of Nevado del Ruiz killed 23000 people, and the 2010 eruption of Eyjafjallajökull led to the closure of many European airports. Therefore, improving methods for monitoring glacier-clad volcanoes is of clear societal benefit. Amongst several methods, satellite based remote sensing techniques are perhaps most promising, since they frequently have a relatively high temporal and spatial resolution, and are mostly freely available. They can help to identify the effects of volcanic activity on glaciers, including ice fracturing, ice surface subsidence and glacier acceleration potentially due to subglacial melt or subglacial dome growth. This study aims to link pre-, syn- and post-eruption glacier behavior to the type and timing of volcanic activity, and to develop a satellite based predictive tool for monitoring future eruptions. Despite several studies that link volcanic activity and changing glacier behavior, the potential of using the latter to predict the former has yet to be systematically tested. Our approach is to use satellite imagery to observe how glaciers responded to past volcanic events, and to build a training database of examples for automated detection and forecasting.</p>


Geology ◽  
2020 ◽  
Vol 48 (5) ◽  
pp. 436-440 ◽  
Author(s):  
Marco Pistolesi ◽  
Antonella Bertagnini ◽  
Alessio Di Roberto ◽  
Maurizio Ripepe ◽  
Mauro Rosi

Abstract Devastation associated with tsunamis is well known on the global scale. Flank collapse at volcanic islands is among the mechanisms triggering tsunamis, but very few examples document interaction between landslides and volcanic activity. The study of three well-preserved medieval tsunami deposits recently discovered along the coast of Stromboli volcano (Aeolian Islands, southern Italy) enabled a detailed characterization of the tsunami sequences intercalated with volcaniclastic deposits and primary tephra and allowed reconstruction of the likely sequence of volcanic events. In one case, a violent explosion possibly preceded the tsunami, whereas in the youngest event, the lateral collapse of the volcano flank triggered a tsunami wave that was rapidly followed by sustained explosive magmatic activity and ensuing prolonged ash venting. The hypothesized tsunami-triggering dynamics suggests a close link between volcanic activity and flank collapse, further confirming that the persistent activity at Stromboli makes the volcano particularly susceptible to tsunami generation.


2004 ◽  
Vol 39 ◽  
pp. 545-556 ◽  
Author(s):  
Daniel Dixon ◽  
Paul A. Mayewski ◽  
Susan Kaspari ◽  
Sharon Sneed ◽  
Mike Handley

AbstractSixteen high-resolution ice-core records from West Antarctica and South Pole are used to examine the spatial and temporal distribution of sulfate for the last 200 years. The preservation of seasonal layers throughout the length of each record results in a dating accuracy of better than 1 year based on known global-scale volcanic events. A dual transport source for West Antarctic sea-salt (ss) SO42– and excess (xs) SO42– is observed: lower-tropospheric for areas below 1000m elevation and mid-/upper-tropospheric/stratospheric for areas located above 1000 m. Our xsSO42– records with volcanic peaks removed do not display any evidence of an anthropogenic impact on West Antarctic SO42– concentrations but do reveal that a major climate transition takes place over West Antarctica at ∼1940. Global-scale volcanic eruptions appear as significant peaks in the robust-spline residual xsSO42– records from sites located above 1000m elevation but do not appear in the residual records from sites located below 1000 m.


1986 ◽  
Vol 8 ◽  
pp. 203
Author(s):  
Melinda M. Brugman

The terminus position of Shoestring Glacier, Mount St. Helens, has pulsated over the last few centuries, generally following local climate trends, but the pattern of advance and retreat has been strongly modulated by effects of local volcanic activity. In this paper, I discuss the techniques employed to map and survey fluctuations in ice velocity, thickness, and terminus position of Shoestring Glacier. Solutions to major problems in acquiring and interpreting data peculiar to an active volcano are also explained. Results show that this steep mountain glacier responds quickly and dramatically to local environmental changes. The effects of volcanic activity are distinguished from internal instabilities and local climate change by combining information obtained using a variety of techniques, including field surveying, contour-mapping using stereo-aerial photographs, photo-documentation, and published historical accounts, In this paper I will focus attention on surveying and mapping conducted since 1979 at Shoestring Glacier, but will also discuss methods used to identify historic and “prehistoric” glacier fluctuations back to the early 1800s. The field survey was conducted at the glacier from mid-1979 to late 1983, during several eruptive episodes, major earthquakes, and covering winter and summer velocity and thickness changes. (Brugman and Post, 1980; Brugman and Meier, 1981). Coordinates of glacier velocity markers and the survey reference net were monitored with several different theodolites and electronic distance meters. In addition, topographic maps of Shoestring Glacier and vicinity were made for the years between 1979 and 1982, for the purpose of characterizing the drastic changes which occurred during the volcanic eruption of Mount St. Helens of May 18, 1980. The maps were constructed with 2 m contour intervals, using three sets of vertical aerial photographs. The difference between maps results in two plots showing the surficial changes caused by the volcanic field-checked against ground survey data on thickness change, using standard techniques. Overall, this study included monitoring glacier flow, configuration, and thickness changes at Shoestring Glacier since mid-1979, and also monitoring any changes in the local survey net due to ground deformation associated with nearby volcanic activity. In addition, photographic and written documentation of recent glacier fluctuations at Mount St. Helens was compiled from a variety of sources, which included local explorers, scientists, mountaineers, aviators, and historians. From this information, I was able to obtain the general pattern of Shoestring Glacier terminus fluctuations since the early 1900s. To extend the study further back in time, I also mapped the local surficial geology surrounding Shoestring Glacier using aerial photographs and ground studies. Because Mount St. Helens is a highly active, young volcano, a major problem was to distinguish glacier moraines, built during a recent ice advance, from volcanic levees built during passage of a recent lahar. Both lahar levees and glacier moraines exist along the glacier margin and most have been dissected and scoured by later mudflows. This study required the separate identification of glacial lag-till, from mudflow and rock avalanche debris. Comparison of depositional and erosional features generated by the several major lahars which decended over the Shoestring Glacier during the 1980 eruptions to pre-1980 surficial geology shows that glacier and lahar deposits are closely intermingled, but they can be distinguished on the basis of surface morphology obtained from aerial photographs, supported by field mapping of sedimentary structures. The dominant pre-1980 surficial deposits were laid down during a time of intense volcanism dating from 1800-1857, when the Shoestring Glacier was initially at its most advanced terminus position in its limited geologic record. During the early 1900s, several minor historic eruptions deposited ash and debris as distinctive englacial debris layers, which were well preserved within the glaciers on Mount St. Helens. Rock material deposited in the early to mid-1800s from glacier advances and volcanic eruptions can be distinguished from volcanic material deposited during the early 1900s because of the minor effect these later eruptions had on the glaciers of Mount St. Helens. This study shows that, over the last few centuries, repeated eruptions of Mount St. Helens have caused important changes in the mass balance of Shoestring Glacier. During several volcanic eruptions since 1800, the Shoestring and nearby glaciers have been deeply blanketed with rock ejecta and avalanche and mudflow debris, which could have increased the glacier mass balances. In contrast, the dominant effect of major volcanic eruptions on the Shoestring Glacier has led to strongly negative mass balances due to scouring, melting, and blasting away of glacier snow and ice. Deep incision of the glacier and its surrounding topography is clearly evident from the maps produced during this study, both during and before 1980. This melting and scouring occurred as pyroclastic flows and lahars swept down the glacier-filled canyon from the summit of the volcano and has probably occurred repeatedly since the canyon holding the Shoestring Glacier was first cut, approximately two thousand years ago. The eruption of Mount St. Helens on May 18, 1980, when the Shoestring Glacier was beheaded, deeply incised, and covered by volcanic ejecta and mudflow debris, is the most recent example of the highly variable environment in which the glacier continues to survive.


1986 ◽  
Vol 8 ◽  
pp. 203-203
Author(s):  
Melinda M. Brugman

The terminus position of Shoestring Glacier, Mount St. Helens, has pulsated over the last few centuries, generally following local climate trends, but the pattern of advance and retreat has been strongly modulated by effects of local volcanic activity. In this paper, I discuss the techniques employed to map and survey fluctuations in ice velocity, thickness, and terminus position of Shoestring Glacier. Solutions to major problems in acquiring and interpreting data peculiar to an active volcano are also explained. Results show that this steep mountain glacier responds quickly and dramatically to local environmental changes. The effects of volcanic activity are distinguished from internal instabilities and local climate change by combining information obtained using a variety of techniques, including field surveying, contour-mapping using stereo-aerial photographs, photo-documentation, and published historical accounts, In this paper I will focus attention on surveying and mapping conducted since 1979 at Shoestring Glacier, but will also discuss methods used to identify historic and “prehistoric” glacier fluctuations back to the early 1800s.The field survey was conducted at the glacier from mid-1979 to late 1983, during several eruptive episodes, major earthquakes, and covering winter and summer velocity and thickness changes. (Brugman and Post, 1980; Brugman and Meier, 1981). Coordinates of glacier velocity markers and the survey reference net were monitored with several different theodolites and electronic distance meters. In addition, topographic maps of Shoestring Glacier and vicinity were made for the years between 1979 and 1982, for the purpose of characterizing the drastic changes which occurred during the volcanic eruption of Mount St. Helens of May 18, 1980. The maps were constructed with 2 m contour intervals, using three sets of vertical aerial photographs. The difference between maps results in two plots showing the surficial changes caused by the volcanic field-checked against ground survey data on thickness change, using standard techniques. Overall, this study included monitoring glacier flow, configuration, and thickness changes at Shoestring Glacier since mid-1979, and also monitoring any changes in the local survey net due to ground deformation associated with nearby volcanic activity.In addition, photographic and written documentation of recent glacier fluctuations at Mount St. Helens was compiled from a variety of sources, which included local explorers, scientists, mountaineers, aviators, and historians. From this information, I was able to obtain the general pattern of Shoestring Glacier terminus fluctuations since the early 1900s.To extend the study further back in time, I also mapped the local surficial geology surrounding Shoestring Glacier using aerial photographs and ground studies. Because Mount St. Helens is a highly active, young volcano, a major problem was to distinguish glacier moraines, built during a recent ice advance, from volcanic levees built during passage of a recent lahar. Both lahar levees and glacier moraines exist along the glacier margin and most have been dissected and scoured by later mudflows. This study required the separate identification of glacial lag-till, from mudflow and rock avalanche debris. Comparison of depositional and erosional features generated by the several major lahars which decended over the Shoestring Glacier during the 1980 eruptions to pre-1980 surficial geology shows that glacier and lahar deposits are closely intermingled, but they can be distinguished on the basis of surface morphology obtained from aerial photographs, supported by field mapping of sedimentary structures. The dominant pre-1980 surficial deposits were laid down during a time of intense volcanism dating from 1800-1857, when the Shoestring Glacier was initially at its most advanced terminus position in its limited geologic record. During the early 1900s, several minor historic eruptions deposited ash and debris as distinctive englacial debris layers, which were well preserved within the glaciers on Mount St. Helens. Rock material deposited in the early to mid-1800s from glacier advances and volcanic eruptions can be distinguished from volcanic material deposited during the early 1900s because of the minor effect these later eruptions had on the glaciers of Mount St. Helens.This study shows that, over the last few centuries, repeated eruptions of Mount St. Helens have caused important changes in the mass balance of Shoestring Glacier. During several volcanic eruptions since 1800, the Shoestring and nearby glaciers have been deeply blanketed with rock ejecta and avalanche and mudflow debris, which could have increased the glacier mass balances. In contrast, the dominant effect of major volcanic eruptions on the Shoestring Glacier has led to strongly negative mass balances due to scouring, melting, and blasting away of glacier snow and ice. Deep incision of the glacier and its surrounding topography is clearly evident from the maps produced during this study, both during and before 1980. This melting and scouring occurred as pyroclastic flows and lahars swept down the glacier-filled canyon from the summit of the volcano and has probably occurred repeatedly since the canyon holding the Shoestring Glacier was first cut, approximately two thousand years ago. The eruption of Mount St. Helens on May 18, 1980, when the Shoestring Glacier was beheaded, deeply incised, and covered by volcanic ejecta and mudflow debris, is the most recent example of the highly variable environment in which the glacier continues to survive.


2021 ◽  
Vol 83 (2) ◽  
Author(s):  
S. Engwell ◽  
L. Mastin ◽  
A. Tupper ◽  
J. Kibler ◽  
P. Acethorp ◽  
...  

AbstractUnderstanding the location, intensity, and likely duration of volcanic hazards is key to reducing risk from volcanic eruptions. Here, we use a novel near-real-time dataset comprising Volcanic Ash Advisories (VAAs) issued over 10 years to investigate global rates and durations of explosive volcanic activity. The VAAs were collected from the nine Volcanic Ash Advisory Centres (VAACs) worldwide. Information extracted allowed analysis of the frequency and type of explosive behaviour, including analysis of key eruption source parameters (ESPs) such as volcanic cloud height and duration. The results reflect changes in the VAA reporting process, data sources, and volcanic activity through time. The data show an increase in the number of VAAs issued since 2015 that cannot be directly correlated to an increase in volcanic activity. Instead, many represent increased observations, including improved capability to detect low- to mid-level volcanic clouds (FL101–FL200, 3–6 km asl), by higher temporal, spatial, and spectral resolution satellite sensors. Comparison of ESP data extracted from the VAAs with the Mastin et al. (J Volcanol Geotherm Res 186:10–21, 2009a) database shows that traditional assumptions used in the classification of volcanoes could be much simplified for operational use. The analysis highlights the VAA data as an exceptional resource documenting global volcanic activity on timescales that complement more widely used eruption datasets.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Weizheng Qu ◽  
Fei Huang ◽  
Jinping Zhao ◽  
Ling Du ◽  
Yong Cao

AbstractThe parasol effect of volcanic dust and aerosol caused by volcanic eruption results in the deepening and strengthening of the Arctic vortex system, thus stimulating or strengthening the Arctic Oscillation (AO). Three of the strongest AOs in more than a century have been linked to volcanic eruptions. Every significant fluctuation of the AO index (AOI = ΔH_middle latitudes − ΔH_Arctic) for many years has been associated with a volcanic eruption. Volcanic activity occurring at different locations in the Arctic vortex circulation will exert different effects on the polar vortex.


2021 ◽  
Author(s):  
James Christie ◽  
Georgina Bennett ◽  
Jacob Hirschberg ◽  
Jenni Barclay ◽  
Richard Herd

<p>Explosive volcanic eruptions are among the most significant natural disturbances to landscapes on Earth. The widespread and rapid influx of pyroclastic sediment, together with subsequent changes to topography and vegetation cover, drives markedly heightened runoff responses to rainfall and increased downstream water and sediment fluxes; principally by way of hazardous lahars. The nature and probability of lahar occurrence under given rainfall conditions evolves as the landscape responds and subsequently recovers following the disturbance. The relationship between varying sediment supply, rainfall patterns, vegetation cover and lahar activity is complex, and impedes forecasting efforts made in the interest of hazard and land use management. Thus, developing an improved understanding of how these systems evolve in response to volcanic eruptions is of high importance.</p><p>Here we present SedCas_Volcano[MOU1] , a conceptual sediment cascade model, designed to simulate the first-order trends, such as magnitude-frequency distributions or seasonal patterns, in lahar activity and sediment transport. We use the Belham River Valley, Montserrat, as a case study. This small (~15km<sup>2</sup>) catchment has been repeatedly disturbed by five phases of volcanic activity at the Soufrière Hills Volcano since 1995. The multi-phase nature of this eruption, together with the varying nature and magnitude of disturbances throughout the eruption, has driven a complex disturbance-recovery cycle, which is further compounded by inter-annual climatic variations (e.g. ENSO). Lahars have occurred frequently in response to rainfall in the Belham River Valley, and their occurrence has evolved through the repeated disturbance-recovery cycle. This activity has resulted in significant net valley floor aggradation and widening, consequent burial and destruction of buildings and infrastructure, as well as coastal aggradation of up to ~250m. Within SedCas_Volcano, we account for evolving sediment supply, vegetation cover and rainfall, to simulate the lahar activity and channel change observed in the Belham River Valley since January 2001. Following this, we test the model under different hypothetical eruptive scenarios. [MOU2] Our goal is to assess the efficacy of such models for reproducing patterns of lahar activity and geomorphic change in river systems that are repeatedly disturbed by volcanic activity.</p>


2021 ◽  
Author(s):  
Imogen Gabriel ◽  
Gill Plunkett ◽  
Peter Abbott ◽  
Bergrún Óladóttir ◽  
Joseph McConnell ◽  
...  

<p>Volcanic eruptions are considered as one of the primary natural drivers for changes in the global climate system and understanding the impact of past eruptions on the climate is integral to adopt appropriate responses towards future volcanic eruptions.</p><p>The Greenland ice core records are dominated by Icelandic eruptions, with several volcanic systems (Katla, Hekla, Bárðarbunga-Veiðivötn and Grimsvötn) being highly active throughout the Holocene. A notable period of increased Icelandic volcanic activity occurred between 500-1250 AD and coincided with climatic changes in the North Atlantic region which may have facilitated the Viking settlement of Greenland and Iceland. However, a number of these volcanic events are poorly constrained (duration and magnitude). Consequently, the Greenland ice cores offer the opportunity to reliably reconstruct past Icelandic volcanism (duration, magnitude and frequency) due to their high-resolution, the proximity of Iceland to Greenland and subsequent increased likelihood of volcanic fallout deposits (tephra particles and sulphur aerosols) being preserved. However, both the high frequency of eruptions between 500-1250 AD and the geochemical similarity of Iceland’s volcanic centres present challenges in making the required robust geochemical correlations between the source volcano and the ice core records and ultimately reliably assessing the climatic-societal impacts of these eruptions.</p><p>To address this, we use two Greenland ice core records (TUNU2013 and B19) and undertake geochemical analysis on tephra from the volcanic events in the selected time window which have been detected and sampled using novel techniques (insoluble particle peaks and sulphur acidity peaks). Further geochemical analysis of proximal material enables robust correlations to be made between the events in the ice core records and their volcanic centres. The high-resolution of these polar archives provides a precise age for the event and when utilised alongside other proxies (i.e. sulphur aerosols), both the duration and magnitude of these eruptions can be constrained, and the climatic-societal impacts of these eruptions reliably assessed.</p>


1982 ◽  
Vol 28 (99) ◽  
pp. 365-375 ◽  
Author(s):  
Julian A. Dowdeswell

AbstractSediment deposition on to snow overlying glacier ice occurs in a marginal zone extending 200–300 m up-glacier from the terminus of Sylgjujökull. Debris on ice above the marginal snow zone comes from debris-rich layers, and 85% of this debris falls between 1 and 4ϕ, the characteristic grain-size of volcanic ash within Icelandic glaciers. The ash is transported down-glacier as suspended load in melt-water streams at concentrations between 61 and 430 mg l−1, and loads from 0.2 to 32.7 g s−1. A diurnal hysteretic loop is present in the relationship between suspended sediment and discharge for one stream.Supraglacial streams flow from relatively impermeable ice on to more permeable snow near the glacier terminus. As they move across the snow, stream discharge (up to 0.1 m3s−1on ice) is reduced and debris is re-sedimented as linear debris trains 1–3 cm thick and orientated orthogonal to the glacier margin. Since sediment deposition reduces the permeability of the snow substrate, the debris trains are successively extended across the snow cover at rates of up to 36.5 m d−1. If the debris is then let down on to glacier ice, linear dirt-cone assemblages may be produced. Re-sedimented debris trains are of little stratigraphic significance if deposited pro-glacially.


Sign in / Sign up

Export Citation Format

Share Document