The 2020 volcano-tectonic unrest at Reykjanes Peninsula, Iceland: stress triggering and reactivation of several volcanic systems

Author(s):  
Halldór Geirsson ◽  
Michelle Parks ◽  
Kristín Vogfjörd ◽  
Páll Einarsson ◽  
Freysteinn Sigmundsson ◽  
...  

<p>The Reykjanes Peninsula in south-west Iceland straddles the North-America - Eurasia plate boundary and hosts several active volcanic systems, including the Svartsengi volcanic system. The last eruption in this area took place around 1240 CE, with eruptive episodes recurring every 800-1000 years, affecting one volcanic system at a time, but spanning multiple systems  with activity spaced ~100 to 200 years. In January 2020, unrest was identified in Svartsengi, characterized by intense seismicity and inflation at a rate of 3-4 mm per day. This area is located within 5 km of several important infrastructures: a) the town of Grindavík; b) the Svartsengi geothermal power plant; c) and the Blue Lagoon geothermal spa, which had over a million annual visits before the Covid pandemy.</p><p> </p><p>Two continuously recording GNSS stations were installed in the Svartsengi geothermal area in 2013-2015 to monitor geothermally-induced subsidence.  Coinciding with the onset of an earthquake swarm starting on January 21 (M<4), uplift of about 3-4 mm/day was noticed in automated GNSS and InSAR results. The uplift rates in this first inflation phase decreased after January 31 and reverted to slight subsidence in early February. Interestingly, the most intense seismicity was offset from the uplift center by about 2-4 km to the southeast. Geodetic source models from the initial two weeks indicate the deformation is the result of a sill intrusion at a depth of about 4 km  with a volume change of approximately 3  million m<sup>3</sup>. The resulting stress changes from this intrusion act to increase seismicity at the sill edges, thus offering an explanation for why the seismicity is offset from the center of uplift. The location of the sill coincides roughly with a crustal volume with a high V<sub>p</sub>/V<sub>s</sub> ratio.</p><p> </p><p>Two more inflation-deflation episodes have occurred at Svartsengi in 2020 and the total uplift amounts to approximately 12 cm. Additionally, at least one inflation episode occurred in the Reykjanes system, in February 2020, and inflation started in the Krýsuvík system in mid-July 2020, culminating in a M5.6 earthquake on October 20. The Fagradalsfjall system, between Krýsuvík and Svartsengi, has shown high seismicity in 2020, but does not display detectable inflation nor deflation. Therefore, the volcano-tectonic activity in 2020 spans the entire western part of the Reykjanes Peninsula. The stress changes for each of these events are too small to explain the cross-system activity, hence we suggest the entire unrest is  by deep magma migration beneath the entire western Reykjanes Peninsula.  </p>

2020 ◽  
Author(s):  
Elisabetta Panza ◽  
Joël Ruch ◽  
François Martin

<p>Volcano-tectonic events in extensional environments release over days or weeks tectonic strain deficit accumulated over several decades or hundreds of years.</p><p>Thanks to its position, on top of both an extensional plate boundary and a mantle plume, several volcano-tectonic events occur in Iceland, and they have relatively accurately reported since the first settlements in ~ 870 AD. The eruptions and graben formation observed during these events are related to magma transport in the crust, which also causes the reactivation of pre-existing structures.</p><p>However, the Earth’s upper crust is classically modelled as homogeneous and fully elastic and not as a pre-fractured medium. This study aims to analyse the role of pre-existing crustal structures on the propagation of magma in extensional environments.</p><p>The 13 main Icelandic volcano-tectonic events, mostly concentrated in the North, East, and West Volcanic Zones, show a return period in the order of 200 years on average. The suggested cyclic nature of strain deficit loading and subsequent release is consistent with the stepwise nature of strain release at divergent plate boundaries: the crustal opening associated with dike emplacement during volcano-tectonic events is of the same order of magnitude of the strain deficit accumulated since the previous event in the same area.</p><p>On this basis, we identified structurally relevant and logistically accessible fieldwork areas in the North Volcanic Zone to perform detailed structural mapping based on UAV-drone imagery. In August 2019 we carried out a UAV survey in Fjallagjá, a graben ~15-20 m deep and ~1 km wide that extends parallel to Sveinagjá graben for ~18 km, in the Askja volcanic system. During the volcano-tectonic event in 1875 in Askja volcanic system, Sveinagjá graben was activated and it subsided 3 to 6 m.</p><p>The UAV is a fixed-wing with a ground resolution down to 1 cm·px<sup>-1</sup> (flying at 100 m above ground), with an on-board PPK antenna. We installed a GNSS base, wich, in combination with the PPK correction, allows a centimetre-accuracy of the georeferencing of the drone images, with no need for aerial targets as GCPs. With this setup we managed to perform 21 flights, covering an area of ~15 km<sup>2</sup>.</p><p>The processing of the drone images resulted in DEMs and orthorectified mosaics of the fieldwork area, allowing to perform a detailed morphological and structural analysis, looking at fracures, topography effects, and potential kinematic indicators. Specific attention is paid to obliquity between sets of structures. The aim is to reconstruct the paleostress history of this area of the plate boundary.</p><p>The use of UAV high-resolution mapping paves the way to an efficient broadening of the fieldwork area and makes available a near-field structural analysis dataset much wider than previously possible.</p>


2021 ◽  
Author(s):  
Ólafur Flóvenz ◽  
Rongjiang Wang ◽  
Gylfi Páll Hersir ◽  
Kristján Ágústsson ◽  
Magdalena Vassileva ◽  
...  

<p>The highly productive high temperature geothermal fields in Iceland are located within active volcanic systems on the plate boundaries. When an earthquake swarm or an unusual surface uplift or subsidence occur, it is important to assess the hazards and whether the unrest is triggered or controlled by volcanic or anthropogenic processes, or a combination of both.</p><p>On January 22nd, 2020, a rapid, large-scale uplift (14 km x 12 km) started at the Svartsengi geothermal field on the plate boundary of the Reykjanes Peninsula, along with an intense earthquake swarm that began simultaneously about 3 km east of the centre of uplift. The centre of uplift was located about 1 km west of Mt. Thorbjörn, in the middle of the Svartsengi geothermal field, close to the reinjection wells. Over a period of 6 months, three such uplift cycles occurred, each lasting for several weeks and followed by periods of relatively rapid subsidence. The duration and timing of the uplift-subsidence cycles appears to follow a clear trend where the successive inflation episodes lasted longer but with lower inflation rate.</p><p>The centres of uplift and the deflation cycles are the same and remained stationary. The accompanied intense earthquake swarms migrated along the 40 km long oblique plate boundary of the Reykjanes Peninsula, demonstrating a major plate tectonic event. The maximum depth of earthquakes was close to 4.5 km directly above the centre of uplift but extending to 6-7 km in the surroundings where the maximum magnitudes reached M<sub>W</sub> 4.8.</p><p>A few weeks after the onset of the unrest, nine additional seismic stations were deployed to densify the local seismic network in place. In addition, complimentary data from an existing 21 km long fibre optics cable were used to monitor high-frequency linear strain rates. Both measures led to a significant improvement in the earthquake detection and location which predominantly occurred in swarms. Likewise, InSAR data analysis of temporal uplift cycles was performed, repeated gravity measurements at permanent sites were performed, and resistivity was remeasured at chosen sites.  </p><p>Multiple different elementary models were developed and tested to explain the cyclic excitation of the uplift, subsidence, and seismicity. While the individual unrest episodes might be controlled by possible magma intrusions into the lower crust, our favoured model explains the spatio-temporal pattern of ground uplift by the rise and diffusion of pore pressure in a 4-5 km deep geothermal aquifer. To distinguish between different models, we use multi-disciplinary geophysical datasets, such as deformation, seismicity, and gravity.</p>


2020 ◽  
Author(s):  
Jakub Klicpera ◽  
Jana Doubravová ◽  
Josef Horálek

<p>The IG CAS in cooperation with IRSM CAS operates two local seismic networks deployed to monitor the seismic swarms in West Bohemia/Vogtland, Czechia and Reykjanes Peninsula, Iceland. </p><p>WEBNET monitors the region of West Bohemia since 1991 developing from 4 short period stations to 24 broadband stations today. The seismoactive region West Bohemia/Vogtland lies in the border area between Czechia and Germany in the western part of Bohemian Massif. It is an intra-continental area with persistent swarm-like seismicity but rarely also main-shock after-shock sequences may occur. </p><p>REYKJANET local seismic network is situated in Reykjanes Peninsula on Southwest Iceland. The area is an onshore part of the mid-Atlantic plate boundary between the North America and Eurasia Plates. The seismic activity of Reykjanes peninsula is represented by typical main-shock after-shock sequences as well as earthquake swarms. The REYKJANET network was built in 2013 and it consists of 15 stations placed around the epicentral area.</p><p>Both networks have been substantially upgraded during the last years. In case of REYKJANET the replacement of old sensors and digitizers with new ones made the operation easier and ready for near future plan to stream the waveform files in real time. WEBNET network which was long years divided into two subnets – on-line permanent stations and off-line autonomous stations, was recently homogenized by eco-powering and 4G LTE data connecting of the off-line stations. Additonally, the micro network HORNET was deployed within the WEBNET epicentral zone to monitor Horka water dam.</p><p>Data from both above mentioned networks are automatically searched for seismic events by the neural-network-based detector designed by Doubravová et al. (2016, 2019) providing event list with completeness magnitude Mc=0 for REYKJANET and Mc=-0.5 for WEBNET. The main difference of sensitivity is given by different noise levels of the two networks.</p>


2021 ◽  
Author(s):  
Philippe Jousset ◽  
Gylfi P. Hersir ◽  
Alina Shevchenko ◽  
Kristjan Agustsson ◽  
Egill A. Gudnasson ◽  
...  

<p><span>The plate boundary between the American and Eurasian plates runs in southwest Iceland along a 5-10 km wide seismicity zone on the Reykjanes Peninsula. There, tectonic spreading events take place as continuous seismic release and seismic episodes (swarms and individual large events) with recurrence interval of about 40 years and volcanic episodes at intervals of 800-1000 years. The crust in Reykjanes is, therefore, particularly thin and hot and geothermal energy is currently harnesses in two areas on the western part of the peninsula in Reykjanes and Svartsengi.</span></p><p><span>Since January 2020, earthquake swarms with larger events up to M5.6 have been occurring frequently over the entire Reykjanes Peninsula, accompanied by unusual uplift (up to 12 cm) and subsidence cycles in the Svartsengi-Eldvörp fissure swarm. This raises the question whether we might be at the beginning of a new volcanic episode. In order to classify such processes at an early stage, multidisciplinary geophysical measurements are particularly valuable.</span></p><p>The Icelandic Meteorological Office (IMO), University of Iceland as well as <span>ISOR and several partners responded immediately after the unrest began. As soon as January 2020, GFZ proposed a rapid response field campaign (MAGIC: MultidisciplinAry imaGIng and Characterization of the magma/fluid reservoir beneath Svartsengi). Only one week after the uplift start and first earthquake swarm, we connected a Distributed Acoustic Sensing interrogator to a 21 km long telecommunication fibre optic cable which crosses the uplift and swarm area. In addition, while we complied to strict constraints due to the Covid-19 pandemic, the rapid response activities comprised deployment of several additional sensors including broadband seismology, rotational seismology and we performed repeated surveys including gas-, gravity-, </span><span>electromagnetic</span><span>-, airborne and ground magnetic- measurements. </span></p><p><span>We present preliminary results from various techniques and discuss their role in discriminating different scenarios aiming at explaining the magma-tectonic unrest phase. In particular, we analyze how the combination of airborne snapshots of ground morphology can be combined with the high temporal and spatial resolution deformation fields along the fibre optic cable. </span></p>


2021 ◽  
Author(s):  
◽  
Gavin Holden

<p>The landscape of Northwest Nelson shows evidence of significant tectonic activity since the inception of the Austro-Pacific plate boundary in the Eocene. Evidence of subsidence followed by rapid uplift from the Eocene to the late Miocene is preserved in the sedimentary basins of Northwest Nelson. However, the effects of erosion mean there is very little evidence of post-Miocene tectonic activity preserved in the Northwest Nelson area. This is a period of particular interest, because it coincides with the onset of rapid uplift along the Alpine Fault, which is located to the south, and the very sparse published data for this period suggest very low uplift rates compared to other areas close to the Alpine Fault.  Cosmogenic nuclide burial dating of sediments preserved in Bulmer Cavern, indicate an uplift rate of 0.13mm/a from the mid-Pliocene to the start of the Pleistocene and 0.067mm/a since the start of the Pleistocene.  The Pleistocene uplift rate is similar to other published uplift rates for this period from the northern parts of Northwest Nelson, suggesting that the whole of Northwest Nelson has experienced relative tectonic stability compared to other areas close to the Alpine Fault during this period. The mid-Pliocene uplift rate is possibly the first precisely constrained uplift rate in the area for this period, and suggests that there has been a progressive decrease in uplift rates from much higher rates in the late Miocene.</p>


2021 ◽  
Author(s):  
◽  
Gavin Holden

<p>The landscape of Northwest Nelson shows evidence of significant tectonic activity since the inception of the Austro-Pacific plate boundary in the Eocene. Evidence of subsidence followed by rapid uplift from the Eocene to the late Miocene is preserved in the sedimentary basins of Northwest Nelson. However, the effects of erosion mean there is very little evidence of post-Miocene tectonic activity preserved in the Northwest Nelson area. This is a period of particular interest, because it coincides with the onset of rapid uplift along the Alpine Fault, which is located to the south, and the very sparse published data for this period suggest very low uplift rates compared to other areas close to the Alpine Fault.  Cosmogenic nuclide burial dating of sediments preserved in Bulmer Cavern, indicate an uplift rate of 0.13mm/a from the mid-Pliocene to the start of the Pleistocene and 0.067mm/a since the start of the Pleistocene.  The Pleistocene uplift rate is similar to other published uplift rates for this period from the northern parts of Northwest Nelson, suggesting that the whole of Northwest Nelson has experienced relative tectonic stability compared to other areas close to the Alpine Fault during this period. The mid-Pliocene uplift rate is possibly the first precisely constrained uplift rate in the area for this period, and suggests that there has been a progressive decrease in uplift rates from much higher rates in the late Miocene.</p>


2011 ◽  
Vol 289 (1-4) ◽  
pp. 135-149 ◽  
Author(s):  
João C. Duarte ◽  
Filipe M. Rosas ◽  
Pedro Terrinha ◽  
Marc-André Gutscher ◽  
Jacques Malavieille ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Michio Kumagai ◽  
Richard D. Robarts ◽  
Yasuaki Aota

AbstractAn autonomous underwater vehicle (AUV) was deployed in Lake Biwa from 2000 to 2012. In December 2009, ebullition of turbid water was first found in the deepest area (> 90 m) of the North Basin. Follow-up investigations in April and December 2010 and January 2012 confirmed the existence of benthic vents similar to the vents observed in other deep lakes. Importantly, vent numbers per unit travel distance in Lake Biwa dramatically increased from only two vents (0.37 vents km−1) in December 2009 to 54 vents (5.28 vents km−1) in January 2012, which could be related to recent tectonic activity in Japan, e.g., the M9.1 Tohoku earthquake in March 2011 and slow earthquakes along the Nankai Trough from 2006 to 2018. Continuous back-up investigations from 2014 to 2019 revealed additional benthic vents in the same area. The sudden increase in benthic vent activity (liquid and gaseous ebullitions) have significant potential to alter lake biogeochemistry and, ultimately, degrade Japan’s major drinking water source and may be a harbinger of major crustal change in the near future.


The Holocene ◽  
2011 ◽  
Vol 21 (7) ◽  
pp. 1037-1048 ◽  
Author(s):  
Bergrún Arna Óladóttir ◽  
Olgeir Sigmarsson ◽  
Gudrún Larsen ◽  
Jean-Luc Devidal

The Holocene eruption history of subglacial volcanoes in Iceland is largely recorded by their tephra deposits. The numerous basaltic tephra offer the possibility to make the tephrochronology in the North Atlantic area more detailed and, therefore, more useful as a tool not only in volcanology but also in environmental and archaeological studies. The source of a tephra is established by mapping its distribution or inferred via compositional fingerprinting, mainly based on major-element analyses. In order to improve the provenance determinations for basaltic tephra produced at Grímsvötn, Bárdarbunga and Kverkfjöll volcanic systems in Iceland, 921 samples from soil profiles around the Vatnajökull ice-cap were analysed for major-element concentrations by electron probe microanalysis. These samples are shown to represent 747 primary tephra units. The tephra erupted within each of these volcanic system has similar chemical characteristics. The major-element results fall into three distinctive compositional groups, all of which show regular decrease of MgO with increasing K2O concentrations. The new analyses presented here considerably improve the compositional distinction between products of the three volcanic systems. Nevertheless, slight overlap of the compositional groups for each system still remains. In situ trace-element analyses by laser-ablation-inductively-coupled-plasma-mass-spectrometry were applied for better provenance identification for those tephra having similar major-element composition. Three trace-element ratios, Rb/Y, La/Yb and Sr/Th, proved particularly useful. Significantly higher La/Yb distinguishes the Grímsvötn basalts from those of Bárdarbunga and Rb/Y values differentiate the basalts of Grímsvötn and Kverkfjöll. Additionally, the products of Bárdarbunga, Grímsvötn and Kverkfjöll form distinct compositional fields on a Sr/Th versus Th plot. Taken together, the combined use of major- and trace-element analyses in delineating the provenance of basaltic tephra having similar major-element composition significantly improves the Holocene tephra record as well as the potential for correlations with tephra from outside Iceland.


Sign in / Sign up

Export Citation Format

Share Document