Investigating cave responses to regional climate change: an approach to calibrate speleothem proxies in Madagascar

Author(s):  
Ny Riavo G. Voarintsoa ◽  
Antsa Lal’Aina J. Ratovonanahary ◽  
Avotriniaina Z. M. Rakotovao ◽  
Steven Bouillon

<p>Caves are an excellent natural laboratory for understanding the transfer processes of the region’s environmental signals to speleothems. At least eight speleothems have produced high resolution paleoclimate and paleoenvironment records from Anjohibe Cave, NW Madagascar. However, due to the remote and difficult access to many caves in Madagascar, no studies have yet been done to understand the transfer of climate and environmental changes of the region to the cave. This is the first monitoring study to understand the linkage between regional climatology and various responses in Anjohibe Cave. We monitored (1) the drip water pH, TDS, EC, temperature, δ<sup>13</sup>C<sub>DIC</sub>, δ<sup>18</sup>O<sub>w</sub>, δ<sup>2</sup>H<sub>w</sub>, and elemental (Ca, Mg, Sr) composition, and (2) the cave atmosphere <em>p</em>CO<sub>2</sub>, relative humidity and temperature. Results show that air-to-air transfer is fast, and the internal parameters closely vary with the regional climatology. In contrast, rainfall to drip signal transfer is not immediate, and it can take few months to one season for the signals to be detected in the drip water due to the “epikarst storage effect”. The deposition of CaCO<sub>3</sub> is inferred to occur late in the dry austral winter season, during which prior carbonate precipitation was also detected. Since the growth of speleothems is influenced by numerous cave-specific factors, this study, although preliminary, indicates that Anjohibe Cave drip waters are capable of registering changes in its surrounding environment. A longer monitoring study is expected in the future to constrain the timing and the mode of transfer.</p>

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Zhili Wang ◽  
Lei Lin ◽  
Yangyang Xu ◽  
Huizheng Che ◽  
Xiaoye Zhang ◽  
...  

AbstractAnthropogenic aerosol (AA) forcing has been shown as a critical driver of climate change over Asia since the mid-20th century. Here we show that almost all Coupled Model Intercomparison Project Phase 6 (CMIP6) models fail to capture the observed dipole pattern of aerosol optical depth (AOD) trends over Asia during 2006–2014, last decade of CMIP6 historical simulation, due to an opposite trend over eastern China compared with observations. The incorrect AOD trend over China is attributed to problematic AA emissions adopted by CMIP6. There are obvious differences in simulated regional aerosol radiative forcing and temperature responses over Asia when using two different emissions inventories (one adopted by CMIP6; the other from Peking university, a more trustworthy inventory) to driving a global aerosol-climate model separately. We further show that some widely adopted CMIP6 pathways (after 2015) also significantly underestimate the more recent decline in AA emissions over China. These flaws may bring about errors to the CMIP6-based regional climate attribution over Asia for the last two decades and projection for the next few decades, previously anticipated to inform a wide range of impact analysis.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3704
Author(s):  
Agnieszka Karman ◽  
Andrzej Miszczuk ◽  
Urszula Bronisz

The article deals with the competitiveness of regions in the face of climate change. The aim was to present the concept of measuring the Regional Climate Change Competitiveness Index. We used a comparative and logical analysis of the concept of regional competitiveness and heuristic conceptual methods to construct the index and measurement scale. The structure of the index includes six broad sub-indexes: Basic, Natural, Efficiency, Innovation, Sectoral, Social, and 89 indicators. A practical application of the model was presented for the Mazowieckie province in Poland. This allowed the region’s performance in the context of climate change to be presented, and regional weaknesses in the process of adaptation to climate change to be identified. The conclusions of the research confirm the possibility of applying the Regional Climate Change Competitiveness Index in the economic analysis and strategic planning. The presented model constitutes one of the earliest tools for the evaluation of climate change competitiveness at a regional level.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaochen Zhao ◽  
Victor H. Rivera-Monroy ◽  
Luis M. Farfán ◽  
Henry Briceño ◽  
Edward Castañeda-Moya ◽  
...  

AbstractMangroves are the most blue-carbon rich coastal wetlands contributing to the reduction of atmospheric CO2 through photosynthesis (sequestration) and high soil organic carbon (C) storage. Globally, mangroves are increasingly impacted by human and natural disturbances under climate warming, including pervasive pulsing tropical cyclones. However, there is limited information assessing cyclone’s functional role in regulating wetlands carbon cycling from annual to decadal scales. Here we show how cyclones with a wide range of integrated kinetic energy (IKE) impact C fluxes in the Everglades, a neotropical region with high cyclone landing frequency. Using long-term mangrove Net Primary Productivity (Litterfall, NPPL) data (2001–2018), we estimated cyclone-induced litterfall particulate organic C (litter-POC) export from mangroves to estuarine waters. Our analysis revealed that this lateral litter-POC flux (71–205 g C m−2 year−1)—currently unaccounted in global C budgets—is similar to C burial rates (69–157 g C m−2 year−1) and dissolved inorganic carbon (DIC, 61–229 g C m−2 year−1) export. We proposed a statistical model (PULITER) between IKE-based pulse index and NPPL to determine cyclone’s impact on mangrove role as C sink or source. Including the cyclone’s functional role in regulating mangrove C fluxes is critical to developing local and regional climate change mitigation plans.


2017 ◽  
Author(s):  
Chunlüe Zhou ◽  
Yanyi He ◽  
Kaicun Wang

Abstract. Reanalyses have been widely used because they add value to the routine observations by generating physically/dynamically consistent and spatiotemporally complete atmospheric fields. Existing studies have extensively discussed their temporal suitability in global change study. This study moves forward on their suitability for regional climate change study where land–atmosphere interactions play a more important role. Here, surface air temperature (Ta) from 12 current reanalysis products were investigated, focusing on spatial patterns of Ta trends, using homogenized Ta from 1979 to 2010 at ~ 2200 meteorological stations in China. Results show that ~ 80 % of the Ta mean differences between reanalyses and in-situ observations are attributed to station and model-grid elevation differences, denoting good skill in Ta climatology and rebutting the previously reported Ta biases. However, the Ta trend biases in reanalyses display spatial divergence (standard deviation = 0.15–0.30 °C/decade at 1° × 1° grids). The simulated Ta trend biases correlate well with those of precipitation frequency, surface incident solar radiation (Rs), and atmospheric downward longwave radiation (Ld) among the reanalyses (r = −0.83, 0.80 and 0.77, p 


2017 ◽  
Vol 17 (6) ◽  
pp. 1563-1568 ◽  
Author(s):  
Christopher P. O. Reyer ◽  
Kanta Kumari Rigaud ◽  
Erick Fernandes ◽  
William Hare ◽  
Olivia Serdeczny ◽  
...  

2012 ◽  
Vol 40-41 ◽  
pp. 32-46 ◽  
Author(s):  
M. Zampieri ◽  
F. Giorgi ◽  
P. Lionello ◽  
G. Nikulin

2021 ◽  
Author(s):  
Chengcheng Ye ◽  
Yibo Yang ◽  
Xiaomin Fang ◽  
Weilin Zhang ◽  
Chunhui Song ◽  
...  

<p>Global cooling, the early uplift of the Tibetan Plateau, and the retreat of the Paratethys are three main factors that regulate long-term climate change in the Asian interior during the Cenozoic. However, the debated elevation history of the Tibetan Plateau and the overlapping climate effects of the Tibetan Plateau uplift and Paratethys retreat makes it difficult to assess the driving mechanism on regional climate change in a particular period. Some recent progress suggests that precisely dated Paratethys transgression/regression cycles appear to have fluctuated over broad regions with low relief in the northern Tibetan Plateau in the middle Eocene–early Oligocene, when the global climate was characterized by generally continuous cooling followed by the rapid Eocene–Oligocene climate transition (EOT). Therefore, a middle Eocene–early Oligocene record from the Asian interior with unambiguous paleoclimatic implications offers an opportunity to distinguish between the climatic effects of the Paratethys retreat and those of global cooling.</p><p>Here, we present a complete paleolake salinity record from middle Eocene to early Miocene (~42-29 Ma) in the Qaidam Basin using detailed clay boron content and clay mineralogical investigations. Two independent paleosalimeters, equivalent boron and Couch’s salinity, collectively present a three-staged salinity evolution, from an oligohaline–mesohaline environment in the middle Eocene (42-~34 Ma) to a mesosaline environment in late Eocene-early Oligocene (~34-~29 Ma). This clay boron-derived salinity evolution is further supported by the published chloride-based and ostracod-based paleosalinity estimates in the Qaidam Basin. Our quantitative paleolake reconstruction between ~42 and 29 Ma in the Qaidam Basin resembles the hydroclimate change in the neighboring Xining Basin, of which both present good agreement with changes of marine benthic oxygen isotope compositions. We thus speculated that the secular trend of clay boron-derived paleolake salinity in ~42-29 Ma is primarily controlled by global cooling, which regulates regional climate change by influencing the evaporation capacity in the moisture source of Qaidam Basin. Superimposed on this trend, the Paratethys transgression/regression cycles served as an important factor regulating wet/dry fluctuations in the Asian interior between ~42 and ~34 Ma.</p>


Sign in / Sign up

Export Citation Format

Share Document