Raman Spectral Trends in ‘low-temperature’ Carbonaceous Materials.

Author(s):  
David Muirhead

<p>Amorphous carbonaceous materials are typically those that would be considered immature, at temperatures below 300°C, in a typical sedimentary basin burial setting. Only recently has there been much discussion on the efficacy of Raman spectroscopy on amorphous carbon at temperatures below 300°C. Here we present data from a variety of published sources alongside our own data reviewing the apparent trends in amorphous carbon with some discussion related to thermal regime (intensity, duration), with case studies including intruded host rocks, fold and thrust belts and wildfires. We conclude that Raman spectroscopy can be applied successfully to ‘low-temperature’ carbonaceous material whilst noting the challenges faced to fully understand the physio-chemical mechanisms at these temperature ranges.</p>

2020 ◽  
Author(s):  
Benjamin Moris-Muttoni ◽  
Romain Augier ◽  
Hugues Raimbourg ◽  
Abdeltif Lahfid

<p>The Raman Spectroscopy of Carbonaceous Materials (RSCM) permits to quantify the degree of crystallinity of carbonaceous materials (CM), which increases upon geological heating. First believed to be a reliable indicator of metamorphic grade (Pasteris and Wopenka, 1991 ; Wada et al., 1996), the quantitative evolution of crystallinity of CM has been proposed as new geothermometers for a wide range of temperature between 200 and 650°C (Beyssac et al., 2002 ; Rahl et al., 2005 ; Lahfid et al., 2010 ; Kouketsu et al., 2014).</p><p>According to recent studies, RSCM approach has been used to detect evidence of frictional heating during seismic events from pseudotachylites (Ito et al., 2017) or on fault gouges and breccia (Furuichi et al., 2015 ; Kuo et al., 2018). This new application assumes that CM spectra reflect only the thermal record irrespectively of the potential impact of geological strain on CM crystallinity (Tagiri and Tsuboi, 1979 ; Bonijoly et al., 1982 ; Ross et al., 1991 ; Bustin et al., 1995).</p><p>The aim of this study is to reconsider this postulate by using RSCM method in order to understand the effects of seismic deformation on the structure of the carbonaceous material. For this purpose, we analyzed three pseuydotachylyte veins from the Shimanto Belt (Southwest Japan), one from a drilling in the Nobeoka Tectonic Line, another from Okitsu area and a last one from the Mugi area, with RSCM method through high-resolution cross-sections perpendicular to the structure. Samples are composed of weakly foliated tectonic melanges troncated by a millimetric shear plane filled by fine black vitreous material accompanied by injection veins. Filling material presents an important grain-size reduction and embayment structures of sandstones clasts, scattered iron sulfides while element maps show flow textures. These microstructure features are described as characteristics of melt-origin pseudotachylytes (Hasegawa et al., 2019) but could also be produced by an intense comminution along with fluids circulation. Area ratio show a large evolution of CM spectra inside the pseudotachylyte compare to the host rock. In addition, intensity ratio (i.e. R1 in Beyssac et al., 2002) drastically increases inside the pseudotachylyte as expected. However, intensity ratio values are higher than expected values at this temperature, from your own calibration on undeformed samples, and highest values are observed on each rim of the pseudotachylyte. This result suggest that structural evolution of CM is not only controlled by temperature, but also by deformation, in a broad sense. More importantly, these parameters shows a very sharp evolution in few microns along cross-sections, which is at variance with thermal diffusivity models applicable for others intrusive bodies (Aoya et al., 2010 ; Hilchie and Jamieson, 2014).</p><p>These observations of step-wise evolution of CM raman parameters suggest that deformation is the principal influencing factor of the evolution of CM crystallinity in fault cores. It therefore questions the maximum temperature reached fault zones, possibly much lower than previously estimated.</p>


2021 ◽  
Author(s):  
Clare Bond ◽  
Lauren Kedar ◽  
David Muirhead

<p>Raman Spectroscopy is increasingly being used to better understand a range of Earth Science processes. Notable recently is the application of Raman Spectroscopy to carbonaceous material in strained rocks. Here we investigate the changes in Raman Spectral response in strained material relative to an unstrained equivalent, drawing on examples from the published literature and our own work. We consider inconsistencies in the relative changes in Raman Spectral parameters of strained material and their potential causes. In doing so we look at some of the current methods for determining Raman Spectral parameters in rocks and what they might tell us about the strain state of carbon in a single rock sample. Finally, we consider the implications for use of Raman Spectroscopy of carbonaceous material as a geothermometer as well as a future potential strain gauge. </p>


Minerals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1068
Author(s):  
Alessandro Croce ◽  
Enrico Pigazzi ◽  
Patrizia Fumagalli ◽  
Caterina Rinaudo ◽  
Michele Zucali

Carbonaceous materials (CMs) have been widely used to assess temperatures in sedimentary and metamorphic carbonate rocks. The use of Raman spectroscopy of carbonaceous material (RSCM) is largely devoted to the study of deformed rocks hosted in thrust-tectonic settings. Raman spectroscopy of carbonaceous material successfully allows the study of carbonate rocks at a temperature as high as 650 °C. In this study, a set of carbonate-mylonite rocks (Italian Alps) were investigated using micro-Raman spectroscopy, in order to infer the deformation conditions associated with the Alpine thrusts, expected to occur at T < 350 °C. Micro-Raman spectra were collected using two sources: green (532 nm) and red (632.8 nm) lasers. Several deconvolution procedures and parameters were tested to optimize the collected spectrum morphologies for the laser sources, also in accordance with the low temperature expected. The obtained temperatures highlight two clusters: one at 340–350 °C for the samples collected in the axial part of the Alpine chain, and the other at 200–240 °C for those collected in the external thrust-and-fold belt. These results agree with the independent geological and petrological constraints. Consistent results were obtained using 532 and 632.8 nm laser sources when the appropriate deconvolution approach was used.


2021 ◽  
Author(s):  
Lauren Kedar ◽  
Clare E. Bond ◽  
David Muirhead

Abstract. Raman spectroscopy is commonly used to estimate peak temperatures in rocks containing organic carbon. In geological settings such as fold-thrust belts, temperature constraints are particularly important as complex burial and exhumation histories cannot easily be modelled. Many authors have developed equations to determine peak tempertaures from Raman spectral parameters, most recently to temperatures as low as 75 °C. However, recent work has shown that Raman spectra can be affected by strain as well as temperature. Fold-thrust systems are often highly deformed on multiple scales, with deformation characterised by faults and shear zones, and therefore temperatures derived from Raman spectra in these settings may be erroneous. In this study, we investigate how the four most common Raman spectral parameters and ratios change through a thrust-stacked carbonate sequence. By comparing samples from relatively low-strain localities to those on thrust planes and in shear zones, we show maximum differences of 0.16 for I[d]/I[g] and 0.11 for R2, while FWHM[d] and Raman Band Separation show no significant change between low and high strained samples. Plausible frictional heating temperatures of faulted samples suggest that the observed changes in Raman spectra are not the result of frictional heating. We apply three equations used to derive the peak temperatures from Raman spectra to our data to investigate the implications on predicted temperatures between strained and unstrained samples. All three equations produce different temperature gradients with depth in unstrained samples. We observe that individual equations exhibit apparently varying sensitivities to strain, but calculated temperatures can be up to 140 °C different for adjacent strained and unstrained samples using the same temperature equation. These results have implications for how temperatures are determined in strained rock samples from Raman spectra.


2019 ◽  
Vol 490 (1) ◽  
pp. 135-151 ◽  
Author(s):  
D. K. Muirhead ◽  
C. E. Bond ◽  
H. Watkins ◽  
R. W. H. Butler ◽  
A. Schito ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Yongli Xu ◽  
Guang Yang ◽  
Hongyuan Zhao

For cement-based materials, the curing temperature determines the strength gain rate and the value of compressive strength. In this paper, the 5% cement-stabilized macadam mixture is used. Three indoor controlled temperature curing and one outdoor natural curing scenarios are designed and implemented to study the strength development scenario law of compressive strength, and they are standard temperature curing (20°C), constant low temperature curing (10°C), day interaction temperature curing (varying from 6°C to 16°C), and one outdoor natural temperature curing (in which the air temperature ranges from 4°C to 20°C). Finally, based on the maturity method, the maturity-strength estimation model is obtained by using and analyzing the data collected from the indoor tests. The model is proved with high accuracy based on the validated results obtained from the data of outdoor tests. This research provides technical support for the construction of cement-stabilized macadam in regions with low temperature, which is beneficial in the construction process and quality control.


Author(s):  
Shuo Zhang ◽  
Hongsheng Jia ◽  
Mingxing Song ◽  
He Shen ◽  
Li Dongfei ◽  
...  

Solid Earth ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 223-231 ◽  
Author(s):  
Martina Kirilova ◽  
Virginia Toy ◽  
Jeremy S. Rooney ◽  
Carolina Giorgetti ◽  
Keith C. Gordon ◽  
...  

Abstract. Graphitization, or the progressive maturation of carbonaceous material, is considered an irreversible process. Thus, the degree of graphite crystallinity, or its structural order, has been calibrated as an indicator of the peak metamorphic temperatures experienced by the host rocks. However, discrepancies between temperatures indicated by graphite crystallinity versus other thermometers have been documented in deformed rocks. To examine the possibility of mechanical modifications of graphite structure and the potential impacts on graphite thermometry, we performed laboratory deformation experiments. We sheared highly crystalline graphite powder at normal stresses of 5 and 25  megapascal (MPa) and aseismic velocities of 1, 10 and 100 µm s−1. The degree of structural order both in the starting and resulting materials was analyzed by Raman microspectroscopy. Our results demonstrate structural disorder of graphite, manifested as changes in the Raman spectra. Microstructural observations show that brittle processes caused the documented mechanical modifications of the aggregate graphite crystallinity. We conclude that the calibrated graphite thermometer is ambiguous in active tectonic settings.


2017 ◽  
Vol 2 (3) ◽  
pp. 390-396 ◽  
Author(s):  
Vinzent Strobel ◽  
Julian Jonathan Schuster ◽  
Andreas Siegfried Braeuer ◽  
Lydia Katharina Vogt ◽  
Henrik Junge ◽  
...  

A combination of operando Raman spectroscopy with online GC and volume-flow monitoring allows rapid insight into low-temperature methanol reforming.


Sign in / Sign up

Export Citation Format

Share Document