Establishing a systematic regional scale identification of artificial ground in Catalan territory from geological perspective

Author(s):  
Guillem Subiela ◽  
Jordi Peña ◽  
Fus Micheo ◽  
Miquel Vilà

<p>Anthropization is the transformation that human actions exert on the environment. Artificial interventions modify the morphology of the ground and affect physical and chemical properties of natural terrain. Therefore, providing information on the distribution of artificial ground throughout the territory is necessary for land management, development and sustainability. Despite the effects of anthropization, from a geological approach, the systematic characterization of anthropic ground on a regional scale is scarcely developed in Catalonia.</p><p>In the last decade, one of the lines of work of Institut Cartogràfic i Geològic de Catalunya (the Catalan geological survey organisation) has been the development of the project Geoanthropic map of Catalonia, which incorporate information of active geological processes and artificial ground. Up to now, the activity in this project has broadly consisted of publishing several map sheets of 1:25.000 scale from different areas of Catalonia (5.000 km<sup>2</sup> from 32.108,2 km<sup>2</sup>). Recently, in the framework of this project, it is proposed to refocus with the purpose of ​​providing information on these two themes from all over the territory. In this process, in relation to artificial interventions, an analysis has been carried out to determine which anthropic terrains and related information can be obtained for its usefulness in a systematic way in the medium term.</p><p>In this analysis, firstly, the available reference information sources have been established from which information on anthropic lands in Catalonia can be extracted. Basically, these documents are topographic maps, geothematic maps, land use map, digital elevation models and other historical cartographic documents. Much of the existing information in these sources must be redirected to a more geological approach so that it can be used to address aspects related to geotechnics, natural hazards, soil pollution and other environmental concerns.</p><p>Secondly, based on data analysis, a series of certain anthropic lands have been evaluated which can be captured on a systematic identification at regional scale. Thereby, the following anthropogenic terrains have been established: built-up areas, agricultural areas, sealed ground, urban compacity, worked grounds (e.g., related to mineral excavations and transport infrastructures), engineered embankments, infilled excavations and other more singular anthropogenic deposits. Therefore, from a geological perspective, it will be feasible to identify and map these anthropic lands and provide this information throughout the Catalan territory in the medium term.</p><p>Bearing in mind all the above, the presentation will consist of this general analysis and the considerations that have been extracted regarding this. In addition, the preliminary results of the systematically characterized artificial ground will be shown.</p>


2018 ◽  
Vol 13 (No. 2) ◽  
pp. 83-89 ◽  
Author(s):  
E. Salković ◽  
I. Djurović ◽  
M. Knežević ◽  
V. Popović-Bugarin ◽  
A. Topalović

This paper describes the process of digitizing Montenegro’s legacy soil data, and an initial attempt to use it for digital soil mapping (DSM) purposes. The handwritten legacy numerical records of physical and chemical properties for more than 10 000 soil profiles and semi-profiles covering whole Montenegro have been digitized, and, out of those, more than 3000 have been georeferenced. Problems and challenges of digitization addressed in the paper are: processing of non-uniform handwritten numerical records, parsing a complex textual representation of those records, georeferencing the records using digitized (scanned) legacy soil maps, creating a single computer database containing all digitized records, transforming, cleaning and validating the data. For an initial assessment of the suitability of these data for mapping purposes, inverse distance weighting (IDW), ordinary kriging (OK), multiple linear regression (LR), and regression-kriging (RK) interpolation models were applied to create thematic maps of soil phosphorus. The area chosen for mapping is a 400 km<sup>2</sup> area near the city of Cetinje, containing 125 data points. LR and RK models were developed using publicly available digital elevation model (DEM) data and satellite global land survey (GLS) data as predictor variables. The digitized phosphorus quantities were normalized and scaled. The predictor variables were scaled, and principal component analysis was performed. For the best performing RK model an R<sup>2</sup> value of 0.23 was obtained.



2015 ◽  
Vol 12 (15) ◽  
pp. 4831-4840 ◽  
Author(s):  
M. Liu ◽  
M. Dannenmann ◽  
S. Lin ◽  
G. Saiz ◽  
G. Yan ◽  
...  

Abstract. Rice production is increasingly limited by water scarcity. Covering paddy rice soils with films (so-called ground cover rice production system: GCRPS) can significantly reduce water demand as well as overcome temperature limitations at the beginning of the growing season, which results in greater grain yields in relatively cold regions and also in those suffering from seasonal water shortages. However, it has been speculated that both increased soil aeration and temperature under GCRPS result in lower soil organic carbon and nitrogen stocks. Here we report on a regional-scale experiment conducted in Shiyan, a typical rice-producing mountainous area of China. We sampled paired adjacent paddy and GCRPS fields at 49 representative sites. Measured parameters included soil carbon (C) and nitrogen (N) stocks (to 1 m depth), soil physical and chemical properties, δ15N composition of plants and soils, potential C mineralization rates, and soil organic carbon (SOC) fractions at all sampling sites. Root biomass was also quantified at one intensively monitored site. The study showed that: (1) GCRPS increased SOC and N stocks 5–20 years following conversion from traditional paddy systems; (2) there were no differences between GCRPS and paddy systems in soil physical and chemical properties for the various soil depths, with the exception of soil bulk density; (3) GCRPS increased above-ground and root biomass in all soil layers down to a 40 cm depth; (4) δ15N values were lower in soils and plant leaves indicating lower NH3 volatilization losses from GCRPS than in paddy systems; and (5) GCRPS had lower C mineralization potential than that observed in paddy systems over a 200-day incubation period. Our results suggest that GCRPS is an innovative production technique that not only increases rice yields using less irrigation water, but that it also increases SOC and N stocks.



Most civil engineering projects are built on soil or rock and are constructed solely or partly of these materials. This chapter provides engineers with a good knowledge of the type and characteristics of the terrain on which such projects are to be constructed in order to achieve optimum safety and economic performance. The earth's crust, which is of interest to geotechnical engineers, is made up of rocks and the so-called unconsolidated sediments composed chiefly of solid mineral particles derived primarily from the physical and chemical weathering of rocks. The concepts of plate tectonics and geologic and soil structures are used to explain the geological processes in the earth. Mineralogy is the primary factor controlling the size, shape, and properties of soil particles. It also determines the possible ranges of physical and chemical properties of any given soil; therefore, a priori knowledge of what minerals are in a soil provides intuitive insight as to its behavior.



2015 ◽  
Vol 12 (4) ◽  
pp. 3647-3674 ◽  
Author(s):  
M. Liu ◽  
M. Dannenmann ◽  
S. Lin ◽  
G. Saiz ◽  
G. Yan ◽  
...  

Abstract. Rice production is increasingly challenged by irrigation water scarcity, however covering paddy rice soils with films (ground cover rice production system: GCRPS) can significantly reduce water demand as well as overcome temperature limitations at the beginning of the vegetation period resulting in increased grain yields in colder regions of rice production with seasonal water shortages. It has been speculated that the increased soil aeration and temperature under GCRPS may result in losses of soil organic carbon and nitrogen stocks. Here we report on a regional scale experiment, conducted by sampling paired adjacent Paddy and GCRPS fields at 49 representative sites in the Shiyan region, which is typical for many mountainous areas across China. Parameters evaluated included soil C and N stocks, soil physical and chemical properties, potential carbon mineralization rates, fractions of soil organic carbon and stable carbon isotopic composition of plant leaves. Furthermore, root biomass was quantified at maximum tillering stage at one of our paired sites. Against expectations the study showed that: (1) GCRPS significantly increased soil organic C and N stocks 5–20 years following conversion of production systems, (2) there were no differences between GCRPS and Paddy in soil physical and chemical properties for the various soil depths with the exception of soil bulk density, (3) GCRPS had lower mineralization potential for soil organic C compared with Paddy over the incubation period, (4) GCRPS showed lower δ15N in the soils and plant leafs indicating less NH3 volatilization in GCRPS than in Paddy; and (5) GCRPS increased yields and root biomass in all soil layers down to 40 cm depth. Our results suggest that GCRPS is an innovative rice production technique that not only increases yields using less irrigation water, but that it also is environmentally beneficial due to increased soil C and N stocks at regional scale.



1966 ◽  
Vol 24 ◽  
pp. 101-110
Author(s):  
W. Iwanowska

In connection with the spectrophotometric study of population-type characteristics of various kinds of stars, a statistical analysis of kinematical and distribution parameters of the same stars is performed at the Toruń Observatory. This has a twofold purpose: first, to provide a practical guide in selecting stars for observing programmes, second, to contribute to the understanding of relations existing between the physical and chemical properties of stars and their kinematics and distribution in the Galaxy.



Author(s):  
Sydney S. Breese ◽  
Howard L. Bachrach

Continuing studies on the physical and chemical properties of foot-and-mouth disease virus (FMDV) have included electron microscopy of RNA strands released when highly purified virus (1) was dialyzed against demlneralized distilled water. The RNA strands were dried on formvar-carbon coated electron microscope screens pretreated with 0.1% bovine plasma albumin in distilled water. At this low salt concentration the RNA strands were extended and were stained with 1% phosphotungstic acid. Random dispersions of strands were recorded on electron micrographs, enlarged to 30,000 or 40,000 X and the lengths measured with a map-measuring wheel. Figure 1 is a typical micrograph and Fig. 2 shows the distributions of strand lengths for the three major types of FMDV (A119 of 6/9/72; C3-Rezende of 1/5/73; and O1-Brugge of 8/24/73.



Author(s):  
Mehmet Sarikaya ◽  
Ilhan A. Aksay

Biomimetics involves investigation of structure, function, and methods of synthesis of biological composite materials. The goal is to apply this information to the design and synthesis of materials for engineering applications.Properties of engineering materials are structure sensitive through the whole spectrum of dimensions from nanometer to macro scale. The goal in designing and processing of technological materials, therefore, is to control microstructural evolution at each of these dimensions so as to achieve predictable physical and chemical properties. Control at each successive level of dimension, however, is a major challenge as is the retention of integrity between successive levels. Engineering materials are rarely fabricated to achieve more than a few of the desired properties and the synthesis techniques usually involve high temperature or low pressure conditions that are energy inefficient and environmentally damaging.In contrast to human-made materials, organisms synthesize composites whose intricate structures are more controlled at each scale and hierarchical order.



2017 ◽  
pp. 31-43
Author(s):  
Berta Ratilla ◽  
Loreme Cagande ◽  
Othello Capuno

Organic farming is one of the management strategies that improve productivity of marginal uplands. The study aimed to: (1) evaluate effects of various organic-based fertilizers on the growth and yield of corn; (2) determine the appropriate combination for optimum yield; and (3) assess changes on the soil physical and chemical properties. Experiment was laid out in Randomized Complete Block Design, with 3 replications and 7 treatments, namely; T0=(0-0-0); T1=1t ha-1 Evans + 45-30-30kg N, P2O5, K2O ha-1; T2=t ha-1 Wellgrow + 45-30-30kg N, P2O5, K2O ha-1; T3=15t ha-1 chicken dung; T4=10t ha-1 chicken dung + 45-30-30kg N, P2O5, K2O ha-1; T5=15t ha-1 Vermicast; and T6=10t ha-1 Vermicast + 45-30-30kg N, P2O5, K2O ha-1. Application of organic-based fertilizers with or without inorganic fertilizers promoted growth of corn than the control. But due to high infestation of corn silk beetle(Monolepta bifasciata Horns), its grain yield was greatly affected. In the second cropping, except for Evans, any of these fertilizers applied alone or combined with 45-30-30kg N, P2O5, K2O ha-1 appeared appropriate in increasing corn earyield. Soil physical and chemical properties changed with addition of organic fertilizers. While bulk density decreased irrespective of treatments, pH, total N, available P and exchangeable K generally increased more with chicken dung application.



Sign in / Sign up

Export Citation Format

Share Document