Topography-correlated atmospheric signal mitigation for InSAR applications in the Tibetan plateau based on global atmospheric models

Author(s):  
Yuqing Wang ◽  
Ling Chang ◽  
Wanpeng Feng ◽  
Sergey Samsonov ◽  
Wenjun Zheng

<p>Atmospheric heterogeneity mainly exposes itself as tropospheric phase delay in satellite interferometric synthetic aperture radar (InSAR) observations, which smears or even overshadows the deformation component of InSAR measurements. In this study, we estimated the performance of four global atmospheric models (GAMs), i.e. ERA5, ERA-Interim (ERA-I), MERRA2 and GACOS, for tropospheric phase delay reduction in InSAR applications in the Tibetan plateau, of which ERA5 is the latest global atmospheric model released by ECMWF. We demonstrated the effectiveness of atmospheric phase screen (APS) correction using the four GAMs for more than 700 Sentinel-1 TOPS interferograms covering two study areas in the southern (R1) and northwest margins (R2) of the Tibetan plateau. Topography-correlated signals have been widely observed in these interferograms, which are most likely due to the APS effects. We calculated the standard deviations (STD) and correlation coefficients between InSAR Line of Sight (LOS) measurements and topography before and after applying APS correction. The results show that the STDs of non-deformation areas from the GAMs decrease to ~4 mm from ~10 mm and ~12 mm originally on average for R1 and R2, respectively, and the correlation coefficients after the APS correction are reduced below 0.4 from ~0.8 for the selected interferometric pairs. In addition, as the newly released GAM, ERA5 has similar performance with GACOS products and outperforms other models generally. This suggests that GAMs, particularly ERA5, have great potentials in the APS correction for InSAR applications in the Tibetan plateau.</p>

2018 ◽  
Vol 18 (10) ◽  
pp. 7329-7343 ◽  
Author(s):  
Jiming Li ◽  
Qiaoyi Lv ◽  
Bida Jian ◽  
Min Zhang ◽  
Chuanfeng Zhao ◽  
...  

Abstract. Studies have shown that changes in cloud cover are responsible for the rapid climate warming over the Tibetan Plateau (TP) in the past 3 decades. To simulate the total cloud cover, atmospheric models have to reasonably represent the characteristics of vertical overlap between cloud layers. Until now, however, this subject has received little attention due to the limited availability of observations, especially over the TP. Based on the above information, the main aim of this study is to examine the properties of cloud overlaps over the TP region and to build an empirical relationship between cloud overlap properties and large-scale atmospheric dynamics using 4 years (2007–2010) of data from the CloudSat cloud product and collocated ERA-Interim reanalysis data. To do this, the cloud overlap parameter α, which is an inverse exponential function of the cloud layer separation D and decorrelation length scale L, is calculated using CloudSat and is discussed. The parameters α and L are both widely used to characterize the transition from the maximum to random overlap assumption with increasing layer separations. For those non-adjacent layers without clear sky between them (that is, contiguous cloud layers), it is found that the overlap parameter α is sensitive to the unique thermodynamic and dynamic environment over the TP, i.e., the unstable atmospheric stratification and corresponding weak wind shear, which leads to maximum overlap (that is, greater α values). This finding agrees well with the previous studies. Finally, we parameterize the decorrelation length scale L as a function of the wind shear and atmospheric stability based on a multiple linear regression. Compared with previous parameterizations, this new scheme can improve the simulation of total cloud cover over the TP when the separations between cloud layers are greater than 1 km. This study thus suggests that the effects of both wind shear and atmospheric stability on cloud overlap should be taken into account in the parameterization of decorrelation length scale L in order to further improve the calculation of the radiative budget and the prediction of climate change over the TP in the atmospheric models.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yi Wang ◽  
Miao Liu ◽  
Youchao Chen ◽  
Tao Zeng ◽  
Xuyang Lu ◽  
...  

Both plant communities and soil microbes have been reported to be correlated with ecosystem multifunctionality (EMF) in terrestrial ecosystems. However, the process and mechanism of aboveground and belowground communities on different EMF patterns are not clear. In order to explore different response patterns and mechanisms of EMF, we divided EMF into low (<0) and high patterns (>0). We found that there were contrasting patterns of low and high EMF in the alpine grassland ecosystem on the Tibetan Plateau. Specifically, compared with low EMF, environmental factors showed higher sensitivity to high EMF. Soil properties are critical factors that mediate the impact of community functions on low EMF based on the change of partial correlation coefficients from 0 to 0.24. In addition, plant community functions and microbial biomass may mediate the shift of EMF from low to high patterns through the driving role of climate across the alpine grassland ecosystem. Our findings will be vital to clarify the mechanism for the stability properties of grassland communities and ecosystems under ongoing and future climate change.


2021 ◽  
pp. 1-56
Author(s):  
Yu Zhao ◽  
Anmin Duan ◽  
Guoxiong Wu

AbstractThe atmospheric circulation changes dramatically over a few days before and after the onset of the South Asian monsoon in spring. It is accompanied by the annual maximum surface heating over the Tibetan Plateau. We conducted two sets of experiments with a coupled general circulation model to compare the response of atmospheric circulation and wind-driven circulation in the Indian Ocean to the thermal forcing of the Tibetan Plateau before and after the monsoon onset. The results show that the Tibetan Plateau's thermal forcing modulates the sea surface temperature (SST) of the Indian Ocean and the meridional circulation in the upper ocean with opposite effects during these two stages. The thermal forcing of the Tibetan Plateau always induces a southwesterly response over the northern Indian Ocean and weakens the northeasterly background circulation before the monsoon onset. Subsequently, wind-evaporation feedback results in a warming SST response. Meanwhile, the oceanic meridional circulation shows offshore upwellings in the north and southward transport in the upper layer crossing the equator, sinking near 15°S. After the monsoon onset, the thermal forcing of the Tibetan Plateau accelerates the background southwesterly and introduces a cooling response to the Indian Ocean SST. The response of oceanic meridional overturning circulation is limited to the north of the equator due to the location and structural evolution of the climatological local Hadley circulation. With an acceleration of the local Walker circulation, the underlying zonal currents also show corresponding changes, including a westerly drift along the equator, downwelling near Indonesia, offshore upwelling near Somalia, and a westward undercurrent.


2021 ◽  
Author(s):  
Weiqiang Ma ◽  
Yaoming Ma ◽  
Yizhe Han ◽  
Wei Hu ◽  
Lei Zhong ◽  
...  

<p>Firstly, based on the difference of model and in-situ observations, a serious of sensitive experiments were done by using WRF. In order to use remote sensing products, a land-atmosphere model was initialized by ingesting land surface parameters, such as AMSR-E RS products, and the results were compared with the default model configuration and with in-situ long-term CAMP/Tibet observations.</p><p>Secondly, a land-atmosphere model was initialized by ingesting AMSR-E products, and the results were compared with the default model configuration and with in-situ long-term CAMP/Tibet observations. The differences between the AMSR-E initialized model runs with the default model configuration and in situ data showed an apparent inconsistency in the model-simulated land surface heat fluxes. The results showed that the soil moisture was sensitive to the specific model configuration. To evaluate and verify the model stability, a long-term modeling study with AMSR-E soil moisture data ingestion was performed. Based on test simulations, AMSR-E data were assimilated into an atmospheric model for July and August 2007. The results showed that the land surface fluxes agreed well with both the in-situ data and the results of the default model configuration. Therefore, the simulation can be used to retrieve land surface heat fluxes from an atmospheric model over the Tibetan Plateau.</p><p>All of the different methods will clarify the land surface heating field in complex plateau, it also can affect atmospheric cycle over the Tibetan Plateau even all of the global atmospheric cycle pattern.</p>


2021 ◽  
Vol 42 (11) ◽  
pp. 4364-4382
Author(s):  
Yuqing Wang ◽  
Ling Chang ◽  
Wanpeng Feng ◽  
Sergey Samsonov ◽  
Wenjun Zheng

2012 ◽  
Vol 9 (8) ◽  
pp. 9503-9532 ◽  
Author(s):  
Y. C. Gao ◽  
M. F. Liu

Abstract. High-resolution satellite precipitation products are very attractive for studying the hydrologic processes in mountainous areas where rain gauges are generally sparse. Three high-resolution satellite precipitation products are evaluated using gauge measurements over different climate zones of the Tibetan Plateau (TP) within a 6 yr period from 2004 to 2009. The three satellite-based precipitation datasets are: Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA), Climate Prediction Center Morphing Technique (CMOPRH) and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Network (PERSIANN). TMPA and CMORPH, with higher correlation coefficients and lower root mean square errors (RMSEs), show overall better performance than PERSIANN. TMPA has the lowest biases among the three precipitation datasets, which is likely due to the correction process against monthly gauge observations from global precipitation climatology project (GPCP). The three products show better agreement with gauge measurements over humid regions than that over arid regions where correlation coefficients are less than 0.5. Moreover, the three precipitation products generally tend to overestimate light rainfall (0–10 mm) and underestimate moderate and heavy rainfall (>10 mm). PERSIANN produces obvious underestimation at low elevations and overestimation at high elevations. CMORPH and TMPA do not present strong bias-elevation relationships in most regions of TP.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yu Liang ◽  
Cheng Quan ◽  
Yongxiang Li ◽  
Weiguo Liu ◽  
Zhonghui Liu

Knowledge of paleolake evolution is highly important for understanding the past hydroclimate regime on the Tibetan Plateau and associated forcing mechanisms. However, the hydrological history of paleolakes on the central plateau, the core region of the plateau, remains largely inconclusive. Here we present new biomarker records from lacustrine deposits of the Lunpori section in the Lunpola Basin to reconstruct detailed lake-level fluctuations during the mid-Miocene. A set of n-alkane indexes, including the proportion of aquatic macrophytes (Paq), average chain length and carbon preference index as well as the content of n-alkanes, vary substantially and consistently throughout the studied interval. Our results altogether show relatively low lake level at ∼16.3–15.5 Ma and high lake level before and after the interval, which is in line with the lithological observations in the section. Further comparison with existing regional and global temperature records suggests that lake level fluctuations can be largely linked to global climatic conditions during the mid-Miocene, with lake expansion during relatively warm periods and vice versa. Therefore, we infer that global climatic changes might have controlled the lake-level fluctuations in this region during the mid-Miocene, whereas the tectonic uplift likely played a subordinate role on this timescale.


Sign in / Sign up

Export Citation Format

Share Document