Accurate continuous observations of carbon dioxide and methane dry mole fractions in the arctic atmosphere near the Dikson settlement, Siberia

Author(s):  
Alexey Panov ◽  
Anatoly Prokushkin ◽  
Jošt Lavrič ◽  
Karl Kübler ◽  
Mikhail Korets ◽  
...  

<div> <p><span>Measurements of the atmospheric sources and sinks of carbon dioxide (CO<sub>2</sub>) and methane (CH<sub>4</sub>) in the pan-Arctic domain are extremely sparse that limits our knowledge of carbon cycling over this dramatically sensitive environment and making predictions about a fate of carbon conserved in currently frozen ground. Especially critical are the gaps in the arctic latitudes of Siberia, covered by the vast permafrost underlain tundra, where only few continuous atmospheric observation stations are currently operational.</span></p> </div><div> <p><span>We present the first two years of accurate continuous observations of atmospheric CO<sub>2</sub> and CH<sub>4</sub> dry mole fractions at the new atmospheric carbon observation station located near the Dikson settlement (73.33° N, 80.34° E) on the seashore of the western part of the Taimyr Peninsula in Siberia. Data quality control of trace gas measurements is achieved by regular calibrations against WMO-traceable reference gases from pressurized dry air tanks filled at the Max Planck Institute for Biogeochemistry (Jena, Germany). Associated meteorological variables permit evaluation of the climate variability of the local environment and provide a background for screening and interpreting the greenhouse gases (GHG) data records. </span><span>Here we summarize the scientific rationale of the new site, give technical details of the instrumental setup, analyse the local environments and present CO</span><sub>2</sub><span> and CH</span><sub>4</sub><span> fluctuations in the arctic atmosphere. Along with the temporal variability of GHG’s, we provide an overview of the angular distribution of detected GHG signals in the region and their input to the atmospheric fluctuations on the measurement site. Observation records deal with the daytime mixed layer and may be considered as representative throughout the vast area (~500–1000 km), and cover the period from September 2018 to September 2020.</span></p> </div><div> <p><span>The </span><span>reported study</span><span> was funded by Russian Foundation for Basic Research, Krasnoyarsk Territory and Krasnoyarsk Regional Fund of Science, project number 20-45-242908, RFBR project </span><span>18-05-60203</span><span> and </span><span>by the Max Planck Society (Germany)</span></p> </div>

2021 ◽  
Author(s):  
Vjacheslav Polyakov ◽  
Evgeny Abakumov

<p>Black carbon is one of the short-lived climatically significant factors. This term refers to climate-forming substances that are located for a short amount of time in the atmosphere - from several days to several years. To identify the role of cryoconite in the conditions of a possible climatic crisis, the stabilization of organic matter isolated from cryoconite holes was assessed. Humic acids are part of the organic matter accumulating in soils and cryoconites and are heterogeneous systems of high-molecular condensed compounds formed as a result of the decomposition of organic remains of plants and animals in terrestrial and aquatic ecosystems. Climatic parameters, precursors of humification, and the local position in the landscape determine the diversity of the composition and properties of HAs. Stabilization of organic material is defined as the transformation of organic matter into a state inaccessible to soil microorganisms, and the very property of stabilization is a characteristic stage in the dynamics of carbon. Using 13C NMR spectroscopy, we determined the proportion of aromatic and aliphatic compounds in the composition of HAs in order to assess the stabilization of organic matter in cryoconites from Mount Elbrus (Caucasus Mountains, Russia), the Arctic (Severnaya Zemlya archipelago, Russia) and Antarctica (King George Island, West Antarctica).</p><p>Samples for qualitative analysis of carbon accumulated in cryoconites were carried out during fieldwork in 2020. The studied samples were analyzed at the Department of Applied Ecology, St. Petersburg State University. Humic acids (HAs) were extracted from each sample according to a published IHSS protocol. Solid-state CP/MAS <sup>13</sup>C-NMR spectra of HAs were measured with a Bruker Avance 500 NMR spectrometer.</p><p>Thus, it follows from the obtained results that aliphatic fragments of humic acids predominate in all studied cryoconites. A similar composition of humic acids testifies to a single mechanism of accumulation and development of organic matter in glacier regions. Low biological activity and climatic features prevent condensation of high-molecular compounds in the organic matter of cryoconite holes. This is an essential prerequisite for high rates of carbon dioxide emissions into the atmosphere under the conditions of deglaciation of the studied regions. With the thawing of glaciers and the ingress of cryoconites into warmer conditions, an additional contribution of carbon dioxide to the atmosphere can occur and, therefore, increase the possible climate crisis on our planet.</p><p>This study was supported by Russian Foundation for Basic Research No. 19-05-50107.</p>


1989 ◽  
Vol 9 (1-3) ◽  
pp. 81-99 ◽  
Author(s):  
T. J. Conway ◽  
L. P. Steele

Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 876
Author(s):  
Alexey Panov ◽  
Anatoly Prokushkin ◽  
Karl Robert Kübler ◽  
Mikhail Korets ◽  
Anastasiya Urban ◽  
...  

Atmospheric observations of sources and sinks of carbon dioxide (CO2) and methane (CH4) in the pan-Arctic domain are highly sporadic, limiting our understanding of carbon turnover in this climatically sensitive environment and the fate of enormous carbon reservoirs buried in permafrost. Particular gaps apply to the Arctic latitudes of Siberia, covered by the vast tundra ecosystems underlain by permafrost, where only few atmospheric sites are available. The paper presents the first results of continuous observations of atmospheric CO2 and CH4 dry mole fractions at a newly operated station “DIAMIS” (73.30° N, 80.31° E) deployed on the edge of the Dikson settlement on the western coast of the Taimyr Peninsula. Atmospheric mole fractions of CO2, CH4, and H2O are measured by a CRDS analyzer Picarro G2301-f, which is regularly calibrated against WMO-traceable gases. Meteorological records permit screening of trace gas series. Here, we give the scientific rationale of the site, describe the instrumental setup, analyze the local environments, examine the seasonal footprint, and show CO2 and CH4 fluctuations for the daytime mixed atmospheric layer that is representative over a vast Arctic domain (~500–1000 km), capturing both terrestrial and oceanic signals.


2016 ◽  
Vol 7 (3) ◽  
pp. 611-625 ◽  
Author(s):  
Stefan Hagemann ◽  
Tanja Blome ◽  
Altug Ekici ◽  
Christian Beer

Abstract. Permafrost or perennially frozen ground is an important part of the terrestrial cryosphere; roughly one quarter of Earth's land surface is underlain by permafrost. The currently observed global warming is most pronounced in the Arctic region and is projected to persist during the coming decades due to anthropogenic CO2 input. This warming will certainly have effects on the ecosystems of the vast permafrost areas of the high northern latitudes. The quantification of such effects, however, is still an open question. This is partly due to the complexity of the system, including several feedback mechanisms between land and atmosphere. In this study we contribute to increasing our understanding of such land–atmosphere interactions using an Earth system model (ESM) which includes a representation of cold-region physical soil processes, especially the effects of freezing and thawing of soil water on thermal and hydrological states and processes. The coupled atmosphere–land models of the ESM of the Max Planck Institute for Meteorology, MPI-ESM, have been driven by prescribed observed SST and sea ice in an AMIP2-type setup with and without newly implemented cold-region soil processes. Results show a large improvement in the simulated discharge. On the one hand this is related to an improved snowmelt peak of runoff due to frozen soil in spring. On the other hand a subsequent reduction in soil moisture enables a positive feedback to precipitation over the high latitudes, which reduces the model's wet biases in precipitation and evapotranspiration during the summer. This is noteworthy as soil-moisture–atmosphere feedbacks have previously not been the focus of research on the high latitudes. These results point out the importance of high-latitude physical processes at the land surface for regional climate.


Nature ◽  
1971 ◽  
Vol 234 (5329) ◽  
pp. 407-408 ◽  
Author(s):  
P. I. COYNE ◽  
J. J. KELLEY

2019 ◽  
Vol 12 (11) ◽  
pp. 5717-5740
Author(s):  
Friedemann Reum ◽  
Mathias Göckede ◽  
Jost V. Lavric ◽  
Olaf Kolle ◽  
Sergey Zimov ◽  
...  

Abstract. Sparse data coverage in the Arctic hampers our understanding of its carbon cycle dynamics and our predictions of the fate of its vast carbon reservoirs in a changing climate. In this paper, we present accurate measurements of atmospheric carbon dioxide (CO2) and methane (CH4) dry air mole fractions at the new atmospheric carbon observation station Ambarchik, which closes a large gap in the atmospheric trace gas monitoring network in northeastern Siberia. The site, which has been operational since August 2014, is located near the delta of the Kolyma River at the coast of the Arctic Ocean. Data quality control of CO2 and CH4 measurements includes frequent calibrations traced to World Meteorological Organization (WMO) scales, employment of a novel water vapor correction, an algorithm to detect the influence of local polluters, and meteorological measurements that enable data selection. The available CO2 and CH4 record was characterized in comparison with in situ data from Barrow, Alaska. A footprint analysis reveals that the station is sensitive to signals from the East Siberian Sea, as well as the northeast Siberian tundra and taiga regions. This makes data from Ambarchik highly valuable for inverse modeling studies aimed at constraining carbon budgets within the pan-Arctic domain, as well as for regional studies focusing on Siberia and the adjacent shelf areas of the Arctic Ocean.


Author(s):  
M.J. Hennessy ◽  
E. Kwok

Much progress in nuclear magnetic resonance microscope has been made in the last few years as a result of improved instrumentation and techniques being made available through basic research in magnetic resonance imaging (MRI) technologies for medicine. Nuclear magnetic resonance (NMR) was first observed in the hydrogen nucleus in water by Bloch, Purcell and Pound over 40 years ago. Today, in medicine, virtually all commercial MRI scans are made of water bound in tissue. This is also true for NMR microscopy, which has focussed mainly on biological applications. The reason water is the favored molecule for NMR is because water is,the most abundant molecule in biology. It is also the most NMR sensitive having the largest nuclear magnetic moment and having reasonable room temperature relaxation times (from 10 ms to 3 sec). The contrast seen in magnetic resonance images is due mostly to distribution of water relaxation times in sample which are extremely sensitive to the local environment.


2020 ◽  
pp. 75-99
Author(s):  
O. I. Sumina

One of the thermokarst relief forms is baidzharakh massif — the group of mounds separated by trenches formed as a result of the underground ice-wedge polygonal networks melting (Fig. 1). Study of baidzharakh vegetation took place on the northeast coast of the Taimyr Peninsula (the Pronchishcheva Bay area) and on the New Siberian Islands (the Kotelny Island) in 1973–1974 (Sumina, 1975, 1976, 1977a, b, 1979 et al.). The aim of this paper is to produce the classification of baidzharakh mound and trenches communities according to the Brown-Blanquet approach (Westhoff, Maarel, 1978) and to compare these data with the community types earlier established on domination principle (Sumina, 1975 et al.). The information obtained in the 1970s could be helpful in a comparative assessment of the thermokarst process dynamics over the past 4 decades, as well as for comparing these processes in other regions of the Arctic. Both studied areas are located in the northern part of the arctic tundra subzone. On the Taimyr Peninsula (and in particular in the Pronchishcheva Bay area) the plakor (zonal) communities belong to the ass. Salici polaris–Hylocomietum alaskani Matveyeva 1998. Our relevés of plakor tundra on the Kotelny Island demonstrate similarity with the zonal communities of the northeast coast of the Taimyr Peninsula (Table 2). Relevés of communities of thermokarst mounds were made within their boundaries, the size of ~ 30 m². In trenches sample plots of the same area had rectangular shape according to trench width. Relevés of plakor tundra were made on 5x6 m plots. There were marked: location in relief, moistening, stand physiognomy, nanorelief, the percent of open ground patches and degree of their overgrowing, total plant cover, that of vascular plants, mosses, and lichens (especially — crustose ons), and cover estimates for each species. The shape of thermokarst mounds depends on the stage of thermodenudation processes. Flat polygons about 0.5 m height with vegetation similar to the plakor tundra are formed at the beginning of ice melting (Fig. 3, a), after which the deformation of the mounds (from eroded flat polygon (Fig. 3, b) to eroded conical mound (Fig. 3, c). Such mounds of maximal height up to 5 m are located on the middle part of steep slopes, where thermodenudation is very active. The last stage of mound destruction is slightly convex mound with a lumpy surface and vegetation, typical to snowbed sites at slope foots (Fig. 3, d, and 5). Both on watersheds and on gentle slopes mounds are not completely destroyed; and on such elongated smooth-conical mounds dense meadow-like vegetation is developed (Fig. 6). On the Kotelny Island thermokarst mounds of all described shapes occur, while in the Pronchishcheva Bay area only flat polygons, eroded flat polygons, and elongated smooth-conical mounds are presented. Under the influence of thermodenudation the plakor (zonal) vegetation is being transformed that allows to consider the most of mound and trench communities as the variants of zonal association. On the base of 63 relevés, made in 14 baidzharakh massifs, 2 variants with 7 subvariants of the ass. Salici polaris–Hylocomietum alaskani Matveyeva 1998 were established, as well as 1 variant of the azonal ass. Poo arcticae– Dupontietum fisheri Matveyeva 1994, which combines the vegetation of wet trenches with dense herbmoss cover. A detailed description of each subvariant is done. All these syntaxa are compared with the types of mound and trenh communities established previously by the domination principle (Sumina, 1975, 1976, 1979 et al.) and with Brown-Blanquet’ syntaxa published by other authors. The Brown-Blanquet approach in compare with domination principle, clearly demonstrates the similarity between zonal and baidzharakh massifs vegetation. Diagnostic species of syntaxa of baidzharakh vegetation by other authors (Matveyeva, 1994; Zanokha, 1995; Kholod, 2007, 2014; Telyatnikov et al., 2017) differ from ours. On the one hand, this is due to the fact that all mentioned researchers worked in another areas, and on the other, with different hierarchial levels of syntaxa, which are subassociations (or vicariants) in cited works or variants and subvariants in the our. Communities of mounds as well as of trenches in different regions have unlike species composition, but similar apearance, which depends on the similarity of the life form composition and community pattern, stage of their transformation and environmental factors. This fact is a base to group communities by physiognomy in order to have an opportunity of comparative analysis of baidzharakh vegetation diversity in different regions of the Arctic. In total, 6 such groups for thermokarst mounds and trenches are proposed: “tundra-like” ― vegetation of flat polygonal mounds (or trenches) is similar to the plakor (zonal) communities; “eroded tundra-like” ― tundra-like vegetation is presented as fragments, open ground occupies the main part of flat polygonal mounds; “eroded mounds with nonassociated vegetation” ― eroded mounds of various shapes up to sharp conical with absent vegetation at the top and slopes, sparse pioneer vascular plants on a bare substrate and crustose lichens and chionophilous grasses at foots; “meadow-like” ― herb stands with a participation of tundra dwarf-shrubs, mosses, and lichens on elongated smooth-conical mounds and in moderately moist trenches; “communities in snowbeds” ― thin plant cover formed by small mosses, liverworts, crustose lichens, and sparse vascular plants in snowbed habitats on destroyed slightly convex mounds with a lumpy surface and in trenches; “communities of cotton grass” or others, depending on the dominant species ― in wet trenches where vegetation is similar to the arctic hypnum bogs with dominant hygrophyte graminoids as Eriophorum scheuchzeri, E. polystachion, Dupontia fischeri et al. This sheme according to physiognomic features of thermokarst mound and trench communities, as a simplier way to assess the current dynamic stage of the baidzharakh massifs, may be useful for monitoring the thermodenudation activity in different areas of the Arctic, particularly in connection with observed climate changes (ACIA, 2004) and a possible dramatic “cascade of their environmental consequences” (Fraser et al., 2018).


2018 ◽  
Vol 284 ◽  
pp. 950-955
Author(s):  
V.G. Merzlikin ◽  
G.I. Bolkina ◽  
L.N. Ignatova

The work is devoted to effective and ecological technologies for the application of functional structured materials for roads, railways, airfields on permafrost with forced cooling of the sub-soil foundation. The physical and mathematical simulation of the thermal state of frozen ground with single and double-layer coatings was performed. The temperature profiles of a model combine roadbed on the longstanding permafrost have been calculated at winter conditions of the Northern Hemisphere. This roadbed include an upper surface coating with low thermal conductivity and high emissivity in the long-wavelength IR range at convective-radiative heat exchange. The second high-conductive subsurface coating is laid on the underlying sub-soil and ensures its cooling as the “heat pump”. The efficiency of the proposed technology of roadbed construction based on the use of non-toxic waste of numerous industrial productions. The carried out research will be in demand for the specialists of transport support, engineering glaciology, in the field of climatology, oceanology, construction, environmental measures, and also in the presentation of financial and economic forecasts of the prospects for the development of polar and subpolar regions, the Arctic and the Antarctic, and high-mountain.


Sign in / Sign up

Export Citation Format

Share Document