A modern digital High Frequency Receiver to explore Uranus and Neptune radio emitters

2020 ◽  
Author(s):  
Laurent Lamy ◽  
Baptiste Cecconi ◽  
Mustapha Dekkali ◽  

<div class="">Among the known planetary magnetospheres, those of Uranus and Neptune display very similar radio environments so that they have early been referred to as ‘radio twins’. They produce a variety of electromagnetic radio waves ranging from ~0 to a few tens of MHz similar to - although more complex than - those of Saturn or the Earth (Desch et al., 1991, Zarka et al., 1995). These include the well known Uranian/Neptunian Kilometric Radiations (UKR/NKR) below 1MHz or the Uranian/Neptunian Electrostatic Discharges (UED/NED) beyond, which remain only known from Voyager 2 radio observations. Here, we present a modern concept of digital High Frequency Receiver (HFR) within the frame of a general Radio and Plasma Wave (RPW) experiment retained in various mission concepts toward Uranus and Neptune (e.g. Hess et al., 2010 ; Arridge et al., 2011, 2013, 2014 Christophe et al., 2011; Masters et al., 2013; Hofstadter at al., 2019). The presented HFR concept, based on the heritage of Cassini/RPWS/HFR, Bepi-Clompobo/PWI/Sorbet, Solar Orbiter/RPW and JUICE/RPWI/JENRAGE is aimed at providing a light, robust, low-consumption versatile instrument capable of goniopolarimetric and waveform measurements from a few kHz to ~20MHz, devoted to the study of auroral and atmospheric radio and plasma waves or dust impacts.</div>

1949 ◽  
Vol 37 (10) ◽  
pp. 1195-1203 ◽  
Author(s):  
M.D. Rocco ◽  
J.B. Smyth
Keyword(s):  

Author(s):  
Bagus Septyanto ◽  
Dian Nurdiana ◽  
Sitti Ahmiatri Saptari

In general, surface positioning using a global satellite navigation system (GNSS). Many satellites transmit radio signals to the surface of the earth and it was detected by receiver sensors into a function of position and time. Radio waves really bad when spreading in water. So, the underwater positioning uses acoustic wave. One type of underwater positioning is USBL. USBL is a positioning system based on measuring the distance and angle. Based on distance and angle, the position of the target in cartesian coordinates can be calculated. In practice, the effect of ship movement is one of the factors that determine the accuracy of the USBL system. Ship movements like a pitch, roll, and orientation that are not defined by the receiver could changes the position of the target in X, Y and Z coordinates. USBL calibration is performed to detect an error angle. USBL calibration is done by two methods. In USBL calibration Single Position obtained orientation correction value is 1.13 ̊ and a scale factor is 0.99025. For USBL Quadrant calibration, pitch correction values is -1.05, Roll -0.02 ̊, Orientation 6.82 ̊ and scale factor 0.9934 are obtained. The quadrant calibration results deccrease the level of error position to 0.276 - 0.289m at a depth of 89m and 0.432m - 0.644m at a depth of 76m


Radio Science ◽  
1985 ◽  
Vol 20 (3) ◽  
pp. 303-309 ◽  
Author(s):  
Kenneth Davies ◽  
Charles M. Rush
Keyword(s):  

1967 ◽  
Vol 20 (03) ◽  
pp. 281-285
Author(s):  
H. C. Freiesleben

It has recently been suggested that 24-hour satellites might be used as navigational aids. To what category of position determination aids should these be assigned ? Is a satellite of this kind as it were a landmark, because, at least in theory, it remains fixed over the same point on the Earth's surface, in which case it should be classified under land-based navigation aids ? Is it a celestial body, although only one tenth as far from the Earth as the Moon ? If so, it is an astronomical navigation aid. Or is it a radio aid ? After all, its use for position determination depends on radio waves. In this paper I shall favour this last view. For automation is most feasible when an object of observation can be manipulated. This is easiest with radio aids, but it is, of course, impossible with natural stars.At present artificial satellites have the advantage over all other radio aids of world-wide coverage.


2015 ◽  
Vol 11 (A29B) ◽  
pp. 367-369
Author(s):  
Lawrence Teitelbaum ◽  
Walid Majid ◽  
Manuel M. Franco ◽  
Daniel J. Hoppe ◽  
Shinji Horiuchi ◽  
...  

AbstractMillisecond pulsars (MSPs) are a class of radio pulsars with extremely stable rotation. Their excellent timing stability can be used to study a wide variety of astrophysical phenomena. In particular, a large sample of these pulsars can be used to detect low-frequency gravitational waves. We have developed a precision pulsar timing backend for the NASA Deep Space Network (DSN), which will allow the use of short gaps in tracking schedules to time pulses from an ensemble of MSPs. The DSN operates clusters of large dish antennas (up to 70-m in diameter), located roughly equidistant around the Earth, for communication and tracking of deep-space spacecraft. The backend system will be capable of removing entirely the dispersive effects of propagation of radio waves through the interstellar medium in real-time. We will describe our development work, initial results, and prospects for future observations over the next few years.


1971 ◽  
Vol 36 (6) ◽  
pp. 473-474 ◽  
Author(s):  
R.N. Franklin ◽  
G.J. Smith ◽  
S.M. Hamberger ◽  
G. Lampis

2019 ◽  
Vol 11 (2) ◽  
Author(s):  
I. Sedikova

High growth rates of natural resources consumption in recent years, pollution of the environment contribute to the development of theories regarding the future provision of natural resources on the Earth. Thepurpose of the article is to study the concept of sustainable development and the need for its introductioninto economic activity, definition of ideas influencing the modern concept of the circular economy. The concept of stable development and circular economy is analyzed, common features and differences are defined.It has been established that the circular economy is a prerequisite and driver of the fourth industrial revolution. The basis of the circular economy are closed supply chains. They combine the usual processes of adirect supply chain with reverse logistics processes, ranging from product recovery, disassembly and reuseof individual parts.


Sign in / Sign up

Export Citation Format

Share Document