A First Comparison Between Ionospheric and Surface Level Magnetic Fields at Mars

2020 ◽  
Author(s):  
Matthew Fillingim ◽  
Catherine Johnson ◽  
Anna Mittelholz ◽  
Benoit Langlais ◽  
Christopher Russell ◽  
...  

<p>With both the Mars Atmosphere and Volatile Evolution (MAVEN) mission and the Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) mission concurrently operating at Mars, we are able to make two point comparisons of the vector magnetic field at Mars for the first time. During MAVEN overflights of the InSight landing site, we compared deviations in the ionospheric magnetic field to variations in the surface level magnetic field. We find significant orbit to orbit variability in the magnitude and direction of the ionospheric magnetic field as well as significant day to day variability of the surface level magnetic field. We attribute this variability to time varying ionospheric currents. However, when analyzing the ensemble of 16 individual MAVEN overflights of the InSight landing location, we see no clear correlation between the magnitudes or directions of the ionospheric magnetic field and the surface magnetic field as might be expected. If the presumed ionospheric currents have a small scale size, then the ionospheric magnetic field will display increased variability as MAVEN flies through the current structure. Whereas the present analysis is restricted to mostly nightside MAVEN overflights where current are expected to be weak, future analyses should incorporate dayside overflights where current are expected to be stronger and current signatures more clear.</p>

2020 ◽  
Vol 635 ◽  
pp. A142 ◽  
Author(s):  
O. Kochukhov ◽  
T. Hackman ◽  
J. J. Lehtinen ◽  
A. Wehrhahn

Global magnetic fields of active solar-like stars are, nowadays, routinely detected with spectropolarimetric measurements and are mapped with Zeeman Doppler imaging (ZDI). However, due to the cancellation of opposite field polarities, polarimetry only captures a tiny fraction of the magnetic flux and cannot assess the overall stellar surface magnetic field if it is dominated by a small-scale component. The analysis of Zeeman broadening in high-resolution intensity spectra can reveal these hidden complex magnetic fields. Historically, there were very few attempts to obtain such measurements for G dwarf stars due to the difficulty of disentangling the Zeeman effect from other broadening mechanisms affecting spectral lines. Here, we developed a new magnetic field diagnostic method based on relative Zeeman intensification of optical atomic lines with different magnetic sensitivity. By using this technique, we obtained 78 field strength measurements for 15 Sun-like stars, including some of the best-studied young solar twins. We find that the average magnetic field strength Bf drops from 1.3−2.0 kG in stars younger than about 120 Myr to 0.2−0.8 kG in older stars. The mean field strength shows a clear correlation with the Rossby number and with the coronal and chromospheric emission indicators. Our results suggest that magnetic regions have roughly the same local field strength B ≈ 3.2 kG in all stars, with the filling factor f of these regions systematically increasing with stellar activity. In comparing our results with the spectropolarimetric analyses of global magnetic fields in the same stars, we find that ZDI recovers about 1% of the total magnetic field energy in the most active stars. This figure drops to just 0.01% for the least active targets.


2019 ◽  
Vol 630 ◽  
pp. A99 ◽  
Author(s):  
A. Lavail ◽  
O. Kochukhov ◽  
G. A. J. Hussain

Aims. In this paper, we aim to characterise the surface magnetic fields of a sample of eight T Tauri stars from high-resolution near-infrared spectroscopy. Some stars in our sample are known to be magnetic from previous spectroscopic or spectropolarimetric studies. Our goals are firstly to apply Zeeman broadening modelling to T Tauri stars with high-resolution data, secondly to expand the sample of stars with measured surface magnetic field strengths, thirdly to investigate possible rotational or long-term magnetic variability by comparing spectral time series of given targets, and fourthly to compare the magnetic field modulus ⟨B⟩ tracing small-scale magnetic fields to those of large-scale magnetic fields derived by Stokes V Zeeman Doppler Imaging (ZDI) studies. Methods. We modelled the Zeeman broadening of magnetically sensitive spectral lines in the near-infrared K-band from high-resolution spectra by using magnetic spectrum synthesis based on realistic model atmospheres and by using different descriptions of the surface magnetic field. We developped a Bayesian framework that selects the complexity of the magnetic field prescription based on the information contained in the data. Results. We obtain individual magnetic field measurements for each star in our sample using four different models. We find that the Bayesian Model 4 performs best in the range of magnetic fields measured on the sample (from 1.5 kG to 4.4 kG). We do not detect a strong rotational variation of ⟨B⟩ with a mean peak-to-peak variation of 0.3 kG. Our confidence intervals are of the same order of magnitude, which suggests that the Zeeman broadening is produced by a small-scale magnetic field homogeneously distributed over stellar surfaces. A comparison of our results with mean large-scale magnetic field measurements from Stokes V ZDI show different fractions of mean field strength being recovered, from 25–42% for relatively simple poloidal axisymmetric field topologies to 2–11% for more complex fields.


2012 ◽  
Vol 8 (S291) ◽  
pp. 444-446
Author(s):  
Lin Lin ◽  
Ersin Göğüş

AbstractWe present the results of our broadband (0.5 − 200 keV) spectral analysis of 42 SGR J1550–5418 bursts simultaneously detected with the Swift/X-ray Telescope (XRT) and the Fermi/Gamma-ray Burst Monitor (GBM), during the 2009 January active episode of the source. We find that, on average, the burst spectra are better described with two blackbody functions than with the Comptonized model. Thus, our joint XRT/GBM analysis clearly shows for the first time that the SGR J1550–5418 burst spectra might naturally be expected to exhibit a more truly thermalized character, such as a two-blackbody or even a multi-blackbody signal. We also studied the spin phase of the XRT burst emission, which indicate that the burst emitting sites on the neutron star need not to be co-located with hot spots emitting the bulk of the persistent X-ray emission and the surface magnetic field of SGR J1550–5418 is likely non-uniform over the emission zone.


1990 ◽  
Vol 138 ◽  
pp. 191-211
Author(s):  
Å. Nordlund ◽  
R. F. Stein

As a prelude to discussing the interaction of magnetic fields with convection, we first review some general properties of convection in a stratified medium. Granulation, which is the surface manifestation of the major energy carrying convection scales, is a shallow phenomenon. Below the surface, the topology changes to one of filamentary cool downdrafts, immersed in a gently ascending isentropic background. The granular downflows merge into more widely separated downdrafts, on scales of mesogranulation and super-granulation.The local topology and time evolution of the small scale, kilo Gauss, network and facular magnetic field elements are controlled by convection on the scale of granulation. The topology and time evolution of larger scale magnetic field concentrations are controlled by the hierarchical structure of the horizontal components of the large scale velocity field. In sunspots, the small scale magnetic field structure determines the energy balance, the systematic flows and the waves. Below the surface, the small scale structure of the magnetic field may change drastically, with little observable effect at the surface. We discuss results of some recent numerical simulations of sunspot magnetic fields, and some mechanisms that may be relevant in determining the topology of the sub-surface magnetic field. Finally, we discuss the role of active region magnetic fields in the global solar dynamo.


2009 ◽  
Vol 27 (5) ◽  
pp. 1897-1907 ◽  
Author(s):  
H. Lühr ◽  
K. Schlegel ◽  
T. Araki ◽  
M. Rother ◽  
M. Förster

Abstract. We have studied 41 Sudden Commencements (SC) using simultaneous magnetic field data from the CHAMP satellite and ground stations of the years 2000–2007. They are all night time events, since the influence of ionospheric currents on the SC is supposed to be minimal at night. This is confirmed by our study for geomagnetic latitudes below ±40°. We further found that the onset times of the SC signature at satellite altitude and on the ground are the same within an uncertainty of 10 s and that the slopes of the corresponding magnetic field variation are very similar. For magnetic latitudes poleward of ±40° the amplitude of SCs increases both at the satellite and on ground, probably a consequence of field-aligned currents. CHAMP sometimes records small-scale magnetic variations different from the ground, which can be explained by local ionospheric currents. We also studied the relationship between the SC amplitude seen by CHAMP and the corresponding abrupt solar wind dynamic pressure change, using ACE data. Our results are compared with earlier studies using ground-based data and with theoretical expectations. It turns out that the induction effect in the Earth is quite small at low latitudes. Another important result is that the magnetic signature near the Earth is over-proportionally reduced for weak SC events. A discussion of accuracy and the uncertainty of our results completes the paper.


2014 ◽  
Vol 10 (S305) ◽  
pp. 53-60 ◽  
Author(s):  
Jason H. Grunhut ◽  
Coralie Neiner

AbstractFor several decades we have been cognizant of the presence of magnetic fields in early-type stars, but our understanding of their magnetic properties has recently (over the last decade) expanded due to the new generation of high-resolution spectropolarimeters (ESPaDOnS at CFHT, Narval at TBL, HARPSpol at ESO). The most detailed surface magnetic field maps of intermediate-mass stars have been obtained through Doppler imaging techniques, allowing us to probe the small-scale structure of these stars. Thanks to the effort of large programmes (e.g. the MiMeS project), we have, for the first time, addressed key issues regarding our understanding of the magnetic properties of massive (M> 8M⊙) stars, whose magnetic fields were only first detected about fifteen years ago. In this proceedings article we review the spectropolarimetric observations and statistics derived in recent years that have formed our general understanding of stellar magnetism in early-type stars. We also discuss how these observations have furthered our understanding of the interactions between the magnetic field and stellar wind, as well as the consequences and connections of this interaction with other observed phenomena.


2021 ◽  
Vol 922 (2) ◽  
pp. 107
Author(s):  
S. Y. Huang ◽  
R. T. Lin ◽  
Z. G. Yuan ◽  
K. Jiang ◽  
Y. Y. Wei ◽  
...  

Abstract Depression in magnetic field strength with a scale below one proton gyroradius is referred to as a kinetic-size magnetic hole (KSMH). KSMHs are frequently observed near Earth’s space environments and are thought to play an important role in electron energization and energy dissipation in space plasmas. Recently, KSMHs have been evidenced in the Venusian magnetosheath. However, observations of KSMHs in other planetary environments are still lacking. In this study, we present the in situ detection of KSMHs in the Martian magnetosheath using Mars Atmosphere and Volatile EvolutioN (MAVEN) for the first time. The distribution of KSMHs is asymmetry in the southern–northern hemisphere and no obvious asymmetry in the dawn–dusk hemisphere. The observed KSMHs are accompanied by increases in the electron fluxes in the perpendicular direction, indicating the cues of trapped electrons and the formation of electron vortices inside KSMHs. These features are similar to the observations in the Earth’s magnetosheath and magnetotail plasma sheet and the Venusian magnetosheath. This implies that KSMHs are a universal magnetic structure in space.


2008 ◽  
Vol 4 (S259) ◽  
pp. 131-132
Author(s):  
George I. Melikidze ◽  
Janusz Gil

AbstractObservations of hot-spot thermal X-ray emission from radio pulsars implicate that surface magnetic field (SMF) at the polar cap is much stronger than the conventional dipolar component estimated from the pulsar spin-down. This strongly suggests that SMF is dominated by the crust anchored small scale magnetic field. We present the observed values of black body temperature and bolometric luminosity of X-ray emission from hot polar caps of a number of pulsars. In all cases the inferred value of SMF is close to 1014 G.


Author(s):  
U Geppert ◽  
R Basu ◽  
D Mitra ◽  
G I Melikidze ◽  
M Szkudlarek

Abstract The radio emission in many pulsars show sudden changes, usually within a period, that cannot be related to the steady state processes within the inner acceleration region (IAR) above the polar cap. These changes are often quasi-periodic in nature, where regular transitions between two or more stable emission states are seen. The durations of these states show a wide variety ranging from several seconds to hours at a time. There are strong, small scale magnetic field structures and huge temperature gradients present at the polar cap surface. We have considered several processes that can cause temporal modifications of the local magnetic field structure and strength at the surface of the polar cap. Using different magnetic field strengths and scales, and also assuming realistic scales of the temperature gradients, the evolutionary timescales of different phenomena affecting the surface magnetic field was estimated. We find that the Hall drift results in faster changes in comparison to both Ohmic decay and thermoelectric effects. A mechanism based on the Partially Screened Gap (PSG) model of the IAR has been proposed, where the Hall and thermoelectric oscillations perturb the polar cap magnetic field to alter the sparking process in the PSG. This is likely to affect the observed radio emission resulting in the observed state changes.


Sign in / Sign up

Export Citation Format

Share Document