scholarly journals Io’s dry body shaped by atmospheric instability

2021 ◽  
Author(s):  
Olivier Mousis ◽  
Emmanuel Marcq ◽  
Artyom Aguichine ◽  
François Leblanc ◽  
Kathleen Mandt ◽  
...  
2017 ◽  
Author(s):  
Lin Su ◽  
Jimmy C.H. Fung

Abstract. An updated version of the Weather Research and Forecast model coupled with Chemistry (WRF-Chem) was applied to quantify and discuss the full effects of dust on the meteorological field over East Asia during March and April 2012. The performances of the model in simulating the short-wave and long-wave radiation, surface temperature, and precipitation over East Asia are improved by incorporating the effects of dust in the simulations. The radiative forcing induced by the dust-enhanced cloud radiative effect is over one order of magnitude larger than that induced by the direct effect of dust. The semi-direct and indirect effects of dust result in a substantial increase in mid- to high clouds, and a significant reduction in low clouds, leading to a decrease of near-surface temperature and an increase of temperature at the mid- to upper troposphere over East Asia. The spatial redistribution of atmospheric water vapor and modification of the vertical temperature profile over East Asia lead to an inhibition of atmospheric instability over most land areas, but an enhancement of atmospheric instability over South China and the ocean, resulting in a significant inhibition of convective precipitation in areas from central to East China, and a substantial enhancement of convective precipitation over South China. Meanwhile, non-convective precipitation is also reduced significantly over East Asia, as cloud droplets are hindered from growing large enough to form rain droplets, due to the semi-direct and indirect effects of dust. The total precipitation can be reduced or increased by up to 20 % or more.


1988 ◽  
Vol 108 ◽  
pp. 102-113
Author(s):  
Cornelis de Jager ◽  
Hans Nieuwenhuijzen

AbstractA review is given of rate of mass-loss values in the upper part of the Hertzsprung-Russell diagram. Near the luminosity limit of stellar existance = −10−4 M⊙ yr−1. Episodical mass loss in bright variable super- and hypergiants does not significantly increase this value. For Wolf-Rayet stars the rate of mass loss is larger by a factor 140 than for non-evolved stars with the same Teff and L; for C stars this factor is ten. This can be explained qualitatively. Rotation appears hardly to influence the rate of mass loss except for vrot-values close to the break-up velocity. This is in accordance with theory. We suggest the existence of a Red Supergiant Branch; along that branch mass loss is virtually independent of luminosity. Stellar winds along the upper limit of stellar existence are mainly due: to radiation pressure for hot supergiants (≳ 10 000 K); to turbulent pressure for cool supergiants (3000-10 000 K), and to dust-driven and pulsation-driven winds for cooler stars. The turbulent pressure may originate in largescale stochastic motions as observed in Alpha Cyg. Episodical mass loss, as observed in P Cyg, HR 8752 and other Very Luminous Variables may be due to occasional violent stochastic motions, resulting in a shock-driven episodical mass-loss component.


Author(s):  
Lidiane de Oliveira Lemos ◽  
Antonio Carlos Oscar-Júnior ◽  
Francisco Mendonça

This study aims to evaluate the land surface temperature (LST) and the thermal characteristics of the Urban Canopy Layer (UCL) of the urban canyon in Avenida Rio Branco in the Central Business District (CBD) of Rio de Janeiro during summer. In order to conduct this evaluation, two methods were employed: 1) TIRS Landsat-8 sensor for data selection and processing (latest generation, 2011-2020); ; 2) field survey using nine sampling points — seven along two mobile transects, one fixed point, and one vertical measurement point, which required the use of a RPA (Remotely Piloted Aircraft). Three categories of analysis were established for the field survey based on the prevailing synoptic situations: stability, instability, and post-instability. The CBD is characterized by extensive areas with surface heat islands, in which temperatures were higher than 38.9°C; the areas with milder LSTs were Campo do Santana, Avenida Rio Branco, and one of the Mixed-Use Zones (Praça Mauá). With respect to Rio Branco Avenue, the LST niches of lowest elevation were derived through building shadowing; however, the orbital data diverged from the observation data of the ten field-study days. In situ data revealed that the characteristics urban morphology of Avenida Rio Branco is susceptible to the formation of heat islands, presenting heat islands of very strong magnitude (over 6.1°C) in atmospheric stability, strong magnitude (4.1-6.0°C) in atmospheric instability, and moderate magnitude (2.1°C-4.0°C) in post-atmospheric instability. Despite the synoptic situation, thermal cores were concentrated at 1 pm. The intersection between Avenida Rio Branco, Rua do Ouvidor, and Praça Mauá stored most of the solar energy received during the day due to the greater sky obstruction caused by the verticalization. Finally, vertical analysis demonstrated the formation of a thermal inversion on the night of the highest mean air temperature (29.5°C), probably, due to the roughness and number of buildings in the urban canyon.


2019 ◽  
Vol 124 (16) ◽  
pp. 9691-9701 ◽  
Author(s):  
Jiming Li ◽  
Bida Jian ◽  
Chuanfeng Zhao ◽  
Yuxin Zhao ◽  
Jing Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document