scholarly journals Statistical downscaling of water vapour satellite measurements from profiles of tropical ice clouds

2020 ◽  
Vol 12 (1) ◽  
pp. 1-20 ◽  
Author(s):  
Giulia Carella ◽  
Mathieu Vrac ◽  
Hélène Brogniez ◽  
Pascal Yiou ◽  
Hélène Chepfer

Abstract. Multi-scale interactions between the main players of the atmospheric water cycle are poorly understood, even in the present-day climate, and represent one of the main sources of uncertainty among future climate projections. Here, we present a method to downscale observations of relative humidity available from the Sondeur Atmosphérique du Profil d'Humidité Intertropical par Radiométrie (SAPHIR) passive microwave sounder at a nominal horizontal resolution of 10 km to the finer resolution of 90 m using scattering ratio profiles from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) lidar. With the scattering ratio profiles as covariates, an iterative approach applied to a non-parametric regression model based on a quantile random forest is used. This allows us to effectively incorporate into the predicted relative humidity structure the high-resolution variability from cloud profiles. The finer-scale water vapour structure is hereby deduced from the indirect physical correlation between relative humidity and the lidar observations. Results are presented for tropical ice clouds over the ocean: based on the coefficient of determination (with respect to the observed relative humidity) and the continuous rank probability skill score (with respect to the climatology), we conclude that we are able to successfully predict, at the resolution of cloud measurements, the relative humidity along the whole troposphere, yet ensure the best possible coherence with the values observed by SAPHIR. By providing a method to generate pseudo-observations of relative humidity (at high spatial resolution) from simultaneous co-located cloud profiles, this work will help revisit some of the current key barriers in atmospheric science. A sample dataset of simultaneous co-located scattering ratio profiles of tropical ice clouds and observations of relative humidity downscaled at the resolution of cloud measurements is available at https://doi.org/10.14768/20181022001.1 (Carella et al., 2019).

2019 ◽  
Author(s):  
Giulia Carella ◽  
Mathieu Vrac ◽  
Hélène Brogniez ◽  
Pascal Yiou ◽  
Hélène Chepfer

Abstract. Multi-scale interactions between the main players of the atmospheric water cycle are poorly understood, even in present-day climate and represent one of the main sources of uncertainty among future climate projections. Here, we present a method to downscale observations of relative humidity available from the passive microwave sounder SAPHIR at a nominal horizontal resolution of 10 km to the finer resolution of 90 m using scattering ratio profiles from the lidar CALIPSO. With the scattering ratio profiles as covariates, an iterative approach applied to a non-parametric regression model based on Quantile Random Forest is used to effectively incorporate into the predicted relative humidity structure the high-resolution variability from cloud profiles. Results are presented for tropical ice clouds over the ocean: based on the coefficient of determination (with respect to the observed relative humidity) and the Continuous Rank Probability Skill Score (with respect to the climatology), we conclude that we are able to successfully predict, at the resolution of cloud measurements, the relative humidity along the whole troposphere, yet ensuring the best possible coherence with the values observed by SAPHIR. By providing a method to generate pseudo-observations of relative humidity (at high spatial resolution) from simultaneous co-located cloud profiles, this work will help revisiting some of the current key barriers in atmospheric science.


2020 ◽  
Author(s):  
Veronique Michot ◽  
Helene Brogniez ◽  
Mathieu Vrac ◽  
Soulivanh Thao ◽  
Helene Chepfer ◽  
...  

<p>The multi-scale interactions at the origin of the links between clouds and water vapour are essential for the Earth's energy balance and thus the climate, from local to global. Knowledge of the distribution and variability of water vapour in the troposphere is indeed a major issue for the understanding of the atmospheric water cycle. At present, these interactions are poorly known at regional and local scales, i.e. within 100km, and are therefore poorly represented in numerical climate models. This is why we have sought to predict cloud scale relative humidity profiles in the intertropical zone, using a non-parametric statistical downscaling method called quantile regression forest. The procedure includes co-located data from 3 satellites: CALIPSO lidar and CloudSat radar, used as predictors and providing cloud properties at 90m and 1.4km horizontal resolution respectively; SAPHIR data used as a predictor and providing relative humidity at an initial horizontal resolution of 10km. Quantile regression forests were used to predict relative humidity profiles at the CALIPSO and CloudSat scales. These predictions are able to reproduce a relative humidity variability consistent with the cloud profiles and are confirmed by values of coefficients of determination greater than 0.7, relative to observed relative humidity, and Continuous Rank Probability Skill Score between 0 and 1, relative to climatology. Lidar measurements from the NARVAL 1&2 campaigns and radiosondes from the EUREC4A campaigns were also used to compare Relative Humidity profiles at the SAPHIR scale and at the scale of forest regression prediction by quantile regression.</p>


An improved version of the selective chopper radiometer which has successfully flown for three years on the Nimbus 4 satellite has been built for the Nimbus 5 satellite which was launched in December 1972. The new instrument has 16 channels, eight of which observe emission from the 15 μm band of carbon dioxide for remote temperature sounding, two observe emission from water-vapour and ice clouds in the far infrared, one observes emission from low atmospheric water-vapour, three are in spectral regions where the atmosphere is substantially transparent, i.e. window regions, and two observe reflected sunlight from high clouds near to 2.7 μm in the near infrared. The horizontal resolution of the instrument is about 25 km and a complete set of measurements is made every 4 s. The design, construction and calibration of the instrument are described.


2019 ◽  
Author(s):  
Alessandro Battaglia ◽  
Pavlos Kollias

Abstract. Relative humidity (RH) measurements in ice clouds are essential for determining the ice crystals growth processes and rates. A differential absorption radar (DAR) system with several frequency channels within the 183.3 GHz water vapour absorption band is proposed for measuring RH within ice clouds. Here, the performance of a DAR system is evaluated by applying a DAR simulator to A-Train observations in combination with collocated European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis. Observations from the CloudSat W-band radar and from the CALIPSO lidar are converted first into ice microphysical properties and then coupled with ECMWF temperature and relative humidity profiles in order to compute scattering properties at any frequency within the 183.3 GHz band. Self-similar Rayleigh Gans approximation is used to model the ice crystal scattering properties. The radar reflectivities are computed both for a space-borne and a ground-based DAR system by using appropriate radar receiver characteristics. Sets of multi-frequency synthetic observation of attenuated reflectivities are then used to retrieve profile of water vapour density by fitting the line shape at different levels. 10 days of A-Train observations are used to test the measurement technique performance for different combination of tones when sampling ice clouds globally. Results show that that water vapour densities can be derived with accuracies that can enable ice process studies (i.e. better than 3 %) both from a ground-based system (at the minute temporal scale and with circa 100 m vertical resolution) and from a space/airborne system (at 500 m vertical resolution and with circa 5 km integration lengths) with four tones in the right wing of the absorption line. A ground-based DAR system to be deployed at high latitude/high altitudes is highly recommended to test the findings of this work in the field.


2019 ◽  
Vol 12 (6) ◽  
pp. 3335-3349 ◽  
Author(s):  
Alessandro Battaglia ◽  
Pavlos Kollias

Abstract. Relative humidity (RH) measurements in ice clouds are essential for determining ice crystal growth processes and rates. A differential absorption radar (DAR) system with several frequency channels within the 183.3 GHz water vapour absorption band is proposed for measuring RH within ice clouds. Here, the performance of a DAR system is evaluated by applying a DAR simulator to A-Train observations in combination with co-located European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis. Observations from the CloudSat W-band radar and from the CALIPSO lidar are converted first into ice microphysical properties and then coupled with ECMWF temperature and relative humidity profiles in order to compute scattering properties at any frequency within the 183.3 GHz band. A self-similar Rayleigh–Gans approximation is used to model the ice crystal scattering properties. The radar reflectivities are computed both for a space-borne and airborne and a ground-based DAR system by using appropriate radar receiver characteristics. Sets of multi-frequency synthetic observation of attenuated reflectivities are then exploited to retrieve profiles of water vapour density by fitting the line shape at different levels. A total of 10 d of A-Train observations are used to test the measurement technique performance for different combinations of tones when sampling ice clouds globally. Results show that water vapour densities can be derived at the level that can enable ice process studies (i.e. better than 3 %), both from a ground-based system (at the minute temporal scale and with circa 100 m vertical resolution) and from a space-borne system (at 500 m vertical resolution and with circa 5 km integration lengths) with four tones in the upper wing of the absorption line. Deploying ground-based DAR system at high latitudes and high altitudes is highly recommended to test the findings of this work in the field.


2005 ◽  
Vol 156 (3-4) ◽  
pp. 100-103
Author(s):  
Rudolf Popper ◽  
Peter Niemz ◽  
Gerhild Eberle

The water vapour diffusion resistance of timber materials were tested in a wet climate (relative humidity ranging from 100%to 65% at 20 °C) and in a dry climate (relative humidity ranging from 0% to 65% and from 0% to 35% at 20 °c) with variation by relative humidity and vapour pressure gradient. The diffusion resistance of multilayer solid wood panels lies under or within the range of the solid wood (spruce), tending even to a lower range. This can be attributed to the loosely inserted middle lamella of the used solid wood panels, which were not correctly glued by the manufacturer. The diffusion resistance of the solid wood panels increases with decreasing moisture content and decreasing panel thickness, as well as with increasing water vapour gradient from 818 to 1520 Pa. There were clear differences between the tested timber materials. The diffusion resistance of particle composites is strongly dependent on the specific gravity. Due to laminar particles OSBs(Oriented Strand Boards) have a larger diffusion resistance than chipboards. The water vapour diffusion resistance of OSBs lies within the range of plywood.


2021 ◽  
Author(s):  
Andreas Petzold ◽  
Valerie Thouret ◽  
Christoph Gerbig ◽  
Andreas Zahn ◽  
Martin Gallagher ◽  
...  

<p>IAGOS (www.iagos.org) is a European Research Infrastructure using commercial aircraft (Airbus A340, A330, and soon A350) for automatic and routine measurements of atmospheric composition including reactive gases (ozone, carbon monoxide, nitrogen oxides, volatile organic compounds), greenhouse gases (water vapour, carbon dioxide, methane), aerosols and cloud particles along with essential thermodynamic parameters. The main objective of IAGOS is to provide the most complete set of high-quality essential climate variables (ECV) covering several decades for the long-term monitoring of climate and air quality. The observations are stored in the IAGOS data centre along with added-value products to facilitate the scientific interpretation of the data. IAGOS began as two European projects, MOZAIC and CARIBIC, in the early 1990s. These projects demonstrated that commercial aircraft are ideal platforms for routine atmospheric measurements. IAGOS then evolved as a European Research Infrastructure offering a mature and sustainable organization for the benefits of the scientific community and for the operational services in charge of air quality and climate change issues such as the Copernicus Atmosphere Monitoring Services (CAMS) and the Copernicus Climate Change Service (C3S). IAGOS is also a contributing network of the World Meteorological Organization (WMO).</p> <p>IAGOS provides measurements of numerous chemical compounds which are recorded simultaneously in the critical region of the upper troposphere – lower stratosphere (UTLS) and geographical regions such as Africa and the mid-Pacific which are poorly sampled by other means. The data are used by hundreds of groups worldwide performing data analysis for climatology and trend studies, model evaluation, satellite validation and the study of detailed chemical and physical processes around the tropopause. IAGOS data also play an important role in the re-assessment of the climate impact of aviation.</p> <p>Most important in the context of weather-related research, IAGOS and its predecessor programmes provide long-term observations of water vapour and relative humidity with respect to ice in the UTLS as well as throughout the tropospheric column during climb-out and descending phases around airports, now for more than 25 years. The high quality and very good resolution of IAGOS observations of relative humidity over ice are used to better understand the role of water vapour and of ice-supersaturated air masses in the tropopause region and to improve their representation in numerical weather and climate forecasting models. Furthermore, CAMS is using the water vapour vertical profiles in near real time for the continuous validation of the CAMS atmospheric models. </p>


2014 ◽  
Vol 7 (5) ◽  
pp. 1201-1211 ◽  
Author(s):  
F. Navas-Guzmán ◽  
J. Fernández-Gálvez ◽  
M. J. Granados-Muñoz ◽  
J. L. Guerrero-Rascado ◽  
J. A. Bravo-Aranda ◽  
...  

Abstract. In this paper, we outline an iterative method to calibrate the water vapour mixing ratio profiles retrieved from Raman lidar measurements. Simultaneous and co-located radiosonde data are used for this purpose and the calibration results obtained during a radiosonde campaign in summer and autumn 2011 are presented. The water vapour profiles measured during night-time by the Raman lidar and radiosondes are compared and the differences between the methodologies are discussed. Then, a new approach to obtain relative humidity profiles by combination of simultaneous profiles of temperature (retrieved from a microwave radiometer) and water vapour mixing ratio (from a Raman lidar) is addressed. In the last part of this work, a statistical analysis of water vapour mixing ratio and relative humidity profiles obtained during 1 year of simultaneous measurements is presented.


2021 ◽  
Vol 21 (6) ◽  
pp. 5195-5216
Author(s):  
Ulrike Proske ◽  
Verena Bessenbacher ◽  
Zane Dedekind ◽  
Ulrike Lohmann ◽  
David Neubauer

Abstract. Clouds and cloud feedbacks represent one of the largest uncertainties in climate projections. As the ice phase influences many key cloud properties and their lifetime, its formation needs to be better understood in order to improve climate and weather prediction models. Ice crystals sedimenting out of a cloud do not sublimate immediately but can survive certain distances and eventually fall into a cloud below. This natural cloud seeding can trigger glaciation and has been shown to enhance precipitation formation. However, to date, an estimate of its occurrence frequency is lacking. In this study, we estimate the occurrence frequency of natural cloud seeding over Switzerland from satellite data and sublimation calculations. We use the DARDAR (radar lidar) satellite product between April 2006 and October 2017 to estimate the occurrence frequency of multi-layer cloud situations, where a cirrus cloud at T < −35 ∘C can provide seeds to a lower-lying feeder cloud. These situations are found to occur in 31 % of the observations. Of these, 42 % have a cirrus cloud above another cloud, separated, while in 58 % the cirrus is part of a thicker cloud, with a potential for in-cloud seeding. Vertical distances between the cirrus and the lower-lying cloud are distributed uniformly between 100 m and 10 km. They are found to not vary with topography. Seasonally, winter nights have the most multi-layer cloud occurrences, in 38 % of the measurements. Additionally, in situ and liquid origin cirrus cloud size modes can be identified according to the ice crystal mean effective radius in the DARDAR data. Using sublimation calculations, we show that in a significant number of cases the seeding ice crystals do not sublimate before reaching the lower-lying feeder cloud. Depending on whether bullet rosette, plate-like or spherical crystals were assumed, 10 %, 11 % or 20 % of the crystals, respectively, could provide seeds after sedimenting 2 km. The high occurrence frequency of seeding situations and the survival of the ice crystals indicate that the seeder–feeder process and natural cloud seeding are widespread phenomena over Switzerland. This hints at a large potential for natural cloud seeding to influence cloud properties and thereby the Earth's radiative budget and water cycle, which should be studied globally. Further investigations of the magnitude of the seeding ice crystals' effect on lower-lying clouds are necessary to estimate the contribution of natural cloud seeding to precipitation.


Sign in / Sign up

Export Citation Format

Share Document