scholarly journals A fine-resolution soil moisture dataset for China in 2002–2018

2021 ◽  
Vol 13 (7) ◽  
pp. 3239-3261 ◽  
Author(s):  
Xiangjin Meng ◽  
Kebiao Mao ◽  
Fei Meng ◽  
Jiancheng Shi ◽  
Jiangyuan Zeng ◽  
...  

Abstract. Soil moisture is an important parameter required for agricultural drought monitoring and climate change models. Passive microwave remote sensing technology has become an important means to quickly obtain soil moisture across large areas, but the coarse spatial resolution of microwave data imposes great limitations on the application of these data. We provide a unique soil moisture dataset (0.05∘, monthly) for China from 2002 to 2018 based on reconstruction model-based downscaling techniques using soil moisture data from different passive microwave products – including AMSR-E and AMSR2 (Advanced Microwave Scanning Radiometer for Earth Observing System) JAXA (Japan Aerospace Exploration Agency) Level 3 products and SMOS-IC (Soil Moisture and Ocean Salinity designed by the Institut National de la Recherche Agronomique, INRA, and Centre d’Etudes Spatiales de la BIOsphère, CESBIO) products – calibrated with a consistent model in combination with ground observation data. This new fine-resolution soil moisture dataset with a high spatial resolution overcomes the multisource data time matching problem between optical and microwave data sources and eliminates the difference between the different sensor observation errors. The validation analysis indicates that the accuracy of the new dataset is satisfactory (bias: −0.057, −0.063 and −0.027 m3 m−3; unbiased root mean square error (ubRMSE): 0.056, 0.036 and 0.048; correlation coefficient (R): 0.84, 0.85 and 0.89 on monthly, seasonal and annual scales, respectively). The new dataset was used to analyze the spatiotemporal patterns of soil water content across China from 2002 to 2018. In the past 17 years, China's soil moisture has shown cyclical fluctuations and a slight downward trend and can be summarized as wet in the south and dry in the north, with increases in the west and decreases in the east. The reconstructed dataset can be widely used to significantly improve hydrologic and drought monitoring and can serve as an important input for ecological and other geophysical models. The data are published in Zenodo at https://doi.org/10.5281/zenodo.4738556 (Meng et al., 2021a).

2020 ◽  
Author(s):  
Xiangjin Meng ◽  
Kebiao Mao ◽  
Fei Meng ◽  
Jiancheng Shi ◽  
Jiangyuan Zeng ◽  
...  

Abstract. Soil moisture is an important parameter required for agricultural drought monitoring and climate change models. Passive microwave remote sensing technology has become an important means to quickly obtain soil moisture over large areas, but the coarse spatial resolution of microwave data imposes great limitations on the application of these data. We provide a unique soil moisture dataset (0.05°, monthly) for China from 2002–2018 based on reconstruction model-based downscaling techniques using soil moisture data from different passive microwave products (including the AMSR-E/2 Level 3 products and the SMOS-INRA-CESBIO (SMOS-IC) products) calibrated with a consistent model in combination with ground observation data. This new fine-resolution soil moisture dataset with a high spatial resolution overcomes the multisource data time matching problem between optical and microwave data sources and eliminates the difference between the different sensor observation errors. The validation analysis indicates that the accuracy of the new dataset is satisfactory (bias: −0.024, −0.030 and −0.016 m3/m3, unbiased root mean square error (ubRMSE): 0.051, 0.048 and 0.042, correlation coefficient (R): 0.82, 0.88, and 0.90 on monthly, seasonal and annual scales, respectively). The new dataset was used to analyze the spatiotemporal patterns of soil water content across China from 2002 to 2018. In the past 17 years, China's soil moisture has shown cyclical fluctuations and a downward trend (slope = −0.167, R = 0.750) and can be summarized as wet in the south and dry in the north, with increases in the west and decreases in the east. The reconstructed dataset can be widely used to significantly improve hydrologic and drought monitoring and can serve as an important input for ecological and other geophysical models. The data are published in the Zenodo at http://doi.org/10.5281/zenodo.4049958 (Meng et al., 2020).


2018 ◽  
Vol 10 (8) ◽  
pp. 1302 ◽  
Author(s):  
Jueying Bai ◽  
Qian Cui ◽  
Deqing Chen ◽  
Haiwei Yu ◽  
Xudong Mao ◽  
...  

China is frequently subjected to local and regional drought disasters, and thus, drought monitoring is vital. Drought assessments based on available surface soil moisture (SM) can account for soil water deficit directly. Microwave remote sensing techniques enable the estimation of global SM with a high temporal resolution. At present, the evaluation of Soil Moisture Active Passive (SMAP) SM products is inadequate, and L-band microwave data have not been applied to agricultural drought monitoring throughout China. In this study, first, we provide a pivotal evaluation of the SMAP L3 radiometer-derived SM product using in situ observation data throughout China, to assist in subsequent drought assessment, and then the SMAP-Derived Soil Water Deficit Index (SWDI-SMAP) is compared with the atmospheric water deficit (AWD) and vegetation health index (VHI). It is found that the SMAP can obtain SM with relatively high accuracy and the SWDI-SMAP has a good overall performance on drought monitoring. Relatively good performance of SWDI-SMAP is shown, except in some mountain regions; the SWDI-SMAP generally performs better in the north than in the south for less dry bias, although better performance of SMAP SM based on the R is shown in the south than in the north; differences between the SWDI-SMAP and VHI are mainly shown in areas without vegetation or those containing drought-resistant plants. In summary, the SWDI-SMAP shows great application potential in drought monitoring.


Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2777
Author(s):  
Tao Cheng ◽  
Siyang Hong ◽  
Bensheng Huang ◽  
Jing Qiu ◽  
Bikui Zhao ◽  
...  

Drought is the costliest disaster around the world and in China as well. Northeastern China is one of China’s most important major grain producing areas. Frequent droughts have harmed the agriculture of this region and further threatened national food security. Therefore, the timely and effective monitoring of drought is extremely important. In this study, the passive microwave remote sensing soil moisture data, i.e., the SMOS soil moisture (SMOS-SM) product, was compared to several in situ meteorological indices through Pearson correlation analysis to assess the performance of SMOS-SM in monitoring drought in northeastern China. Then, maps based on SMOS-SM and in situ indices were created for July from 2010 to 2015 to identify the spatial pattern of drought distributions. Our results showed that the SMOS-SM product had relatively high correlation with in situ indices, especially SPI and SPEI values of a nine-month scale for the growing season. The drought patterns shown on maps generated from SPI-9, SPEI-9 and sc-PDSI were also successfully captured using the SMOS-SM product. We found that the SMOS-SM product effectively monitored drought patterns in northeastern China, and this capacity would be enhanced when field capacity information became available.


2013 ◽  
Vol 781-784 ◽  
pp. 2353-2356
Author(s):  
Jing Wen Xu ◽  
Shuang Liu ◽  
Jun Fang Zhao ◽  
Jin Lun Han ◽  
Peng Wang

Soil moisture plays an important role in agricultural drought monitoring. However, the traditional observed soil moisture data from meteorological stations has not been able to meet the demands for large-scale drought monitoring temporally and spatially. The microwave remote sensing is a new effective way for obtaining near surface soil moisture. The temporal and spatial variation in soil moisture in arid regions in northern China is examined based on the soil moisture data retrieved from AMSR-E (Advanced Microwave Scanning Radiometer-EOS), with which the observed soil moisture data at 10 cm depth from meteorological stations are compared. The results show that there is a small change in soil moisture with seasons for the central and west areas, while a large change for the east areas of the study region and the soil moisture in summer and autumn is greater than that in spring and winter. And that it decreases from southeast to northwest spatially, as is agree with the spatial distribution of precipitation in the study area. Moreover, there is a great difference in spatial distribution between the soil moisture retrieved from AMSR-E and the observed soil moisture data from meteorological stations for the central and west areas, while a small difference for the east areas of the study region.


Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3527 ◽  
Author(s):  
Xiangjin Meng ◽  
Kebiao Mao ◽  
Fei Meng ◽  
Xinyi Shen ◽  
Tongren Xu ◽  
...  

It is very important to analyze and monitor agricultural drought to obtain high temporal-spatial resolution soil moisture products. To overcome the deficiencies of passive microwave soil moisture products with low resolution, we construct a spatial fusion downscaling model (SFDM) using Moderate Resolution Imaging Spectroradiometer (MODIS) data. To eliminate the inconsistencies in soil depth and time among different microwave soil moisture products (Advanced Microwave Scanning Radiometer on the Earth Observing System (AMSR-E) and its successor (AMSR2) and the Soil Moisture Ocean Salinity (SMOS)), a time series reconstruction of the difference decomposition (TSRDD) method is developed to create long-term multisensor soil moisture datasets. Overall, the downscaled soil moisture (SM) products were consistent with the in situ measurements (R > 0.78) and exhibited a low root mean square error (RMSE < 0.10 m3/m3), which indicates good accuracy throughout the time series. The downscaled SM data at a 1-km spatial resolution were used to analyze the spatiotemporal patterns and monitor abnormal conditions in the soil water content across North East China (NEC) between 2002 and 2018. The results showed that droughts frequently appeared in western North East China and southwest of the Greater Khingan Range, while drought centers appeared in central North East China. Waterlogging commonly appeared in low-terrain areas, such as the Songnen Plain. Seasonal precipitation and temperature exhibited distinct interdecadal characteristics that were closely related to the occurrence of extreme climatic events. Abnormal SM levels were often accompanied by large meteorological and natural disasters (e.g., the droughts of 2008, 2015, and 2018 and the flooding events of 2003 and 2013). The spatial distribution of drought in this region during the growing season shows that the drought-affected area is larger in the west than in the east and that the semiarid boundary extends eastward and southward.


Author(s):  
Thomas J. Jackson

Mitigating the effects of drought can be improved through better information on the current status, the prediction of occurrence, and the extent of drought. Soil moisture can now be measured using a new generation of microwave remote sensing satellites. These measurements can be used to monitor drought conditions on a daily basis over the entire earth. The quality of these products will continue to improve over time as new sensors are launched. These satellite products, combined with existing in situ observations and models, should be exploited in drought monitoring, assessment, and prediction. Measuring soil moisture on a routine basis has the potential to significantly improve our understanding of climatic processes and strengthen our ability to model and forecast these processes. Leese et al. (2001) concluded that the optimal approach to monitoring soil moisture would be a combination of model-derived estimates using in situ and remotely sensed measurements. In this regard, each method produces soil moisture values that are both unique and complementary. This concept is essentially the process of data assimilation described by Houser et al. (1998). In situ measurements of soil moisture have been made in a few countries over the past 70 years (Robock et al., 2000). However, due to cost and sensor limitations, there are few soil moisture sensor systems available today, especially for automated measurements. A lack of routine observations of soil moisture has led to the use of surrogate measurements (i.e., antecedent precipitation index) and modeled estimates, which limits the possibility of physically based model validation and acceptance. Current tools to predict drought, such as drought indices and Global Climate Models (GCMs), do not include any direct observations of the soil condition, which is critical for agriculture. Passive microwave remote sensing instruments respond to the amount of moisture in the soil. Several methods have the potential to provide both soil moisture and drought information. In the past, the options have been limited by the availability of satellite systems. Even with these limitations, investigators have explored the potential of these data in soil moisture studies with some success.


2012 ◽  
Vol 16 (9) ◽  
pp. 3451-3460 ◽  
Author(s):  
W. T. Crow ◽  
S. V. Kumar ◽  
J. D. Bolten

Abstract. The lagged rank cross-correlation between model-derived root-zone soil moisture estimates and remotely sensed vegetation indices (VI) is examined between January 2000 and December 2010 to quantify the skill of various soil moisture models for agricultural drought monitoring. Examined modeling strategies range from a simple antecedent precipitation index to the application of modern land surface models (LSMs) based on complex water and energy balance formulations. A quasi-global evaluation of lagged VI/soil moisture cross-correlation suggests, when globally averaged across the entire annual cycle, soil moisture estimates obtained from complex LSMs provide little added skill (< 5% in relative terms) in anticipating variations in vegetation condition relative to a simplified water accounting procedure based solely on observed precipitation. However, larger amounts of added skill (5–15% in relative terms) can be identified when focusing exclusively on the extra-tropical growing season and/or utilizing soil moisture values acquired by averaging across a multi-model ensemble.


Sign in / Sign up

Export Citation Format

Share Document