scholarly journals Reconstruction of daily gridded snow water equivalent product for the Pan-Arctic region based on a ridge regression machine learning approach

2021 ◽  
Author(s):  
Donghang Shao ◽  
Hongyi Li ◽  
Jian Wang ◽  
Xiaohua Hao ◽  
Tao Che ◽  
...  

Abstract. Snow water equivalent is an important parameter of the surface hydrological and climate systems, and it has a profound impact on Arctic amplification and climate change. However, there are great differences among existing snow water equivalent products. In the Pan-Arctic region, the existing snow water equivalent products are limited time span and limited spatial coverage, and the spatial resolution is coarse, which greatly limits the application of snow water equivalent data in cryosphere change and climate change studies. In this study, utilizing the ridge regression model (RRM) of a machine learning algorithm, we integrated various existing snow water equivalent (SWE) products to generate a spatiotemporally seamless and high-precision RRM SWE product. The results show that it is feasible to utilize a ridge regression model based on a machine learning algorithm to prepare snow water equivalent products on a global scale. We evaluated the accuracy of the RRM SWE product using Global Historical Climatology Network (GHCN) data and Russian snow survey data. The MAE, RMSE, R, and R2; between the RRM SWE products and observed snow water equivalents are 0.24, 30.29 mm, 0.87, and 0.76, respectively. The accuracy of the RRM SWE dataset is improved by 24 %, 25 %, 32 %, 7 %, and 10 % compared with the original AMSR-E/AMSR2 snow water equivalent dataset, ERA-Interim SWE dataset, Global Land Data Assimilation System (GLDAS) SWE dataset, GlobSnow SWE dataset, and ERA5-land SWE dataset, respectively, and it has a higher spatial resolution. The RRM SWE product production method does not rely too much on an independent snow water equivalent product, it makes full use of the advantages of each snow water equivalent dataset, and it considers the altitude factor. The average MAE of RRM SWE product at different altitude intervals is 0.24 and the average RMSE is 23.55 mm, this method has good stability, it is extremely suitable for the production of snow datasets with large spatial scales, and it can be easily extended to the preparation of other snow datasets. The RRM SWE product is expected to provide more accurate snow water equivalent data for the hydrological model and climate model and provide data support for cryosphere change and climate change studies. The RRM SWE product is available from the ‘A Big Earth Data Platform for Three Poles’ (http://dx.doi.org/10.11888/Snow.tpdc.271556) (Li et al., 2021).

2021 ◽  
Author(s):  
Abby C. Lute ◽  
John Abatzoglou ◽  
Timothy Link

Abstract. Seasonal snowpack dynamics shape the biophysical and societal characteristics of many global regions. However, snowpack accumulation and duration have generally declined in recent decades largely due to anthropogenic climate change. Mechanistic understanding of snowpack spatiotemporal heterogeneity and climate change impacts will benefit from snow data products that are based on physical principles, that are simulated at high spatial resolution, and that cover large geographic domains. Existing datasets do not meet these requirements, hindering our ability to understand both contemporary and changing snow regimes and to develop adaptation strategies in regions where snowpack patterns and processes are important components of Earth systems. We developed a computationally efficient physics-based snow model, SnowClim, that can be run in the cloud. The model was evaluated and calibrated at Snowpack Telemetry sites across the western United States (US), achieving a site-median root mean square error for daily snow water equivalent of 62 mm, bias in peak snow water equivalent of −9.6 mm, and bias in snow duration of 1.2 days when run hourly. Positive biases were found at sites with mean winter temperature above freezing where the estimation of precipitation phase is prone to errors. The model was applied to the western US using newly developed forcing data created by statistically downscaling pre-industrial, historical, and pseudo-global warming climate data from the Weather Research and Forecasting (WRF) model. The resulting product is the SnowClim dataset, a suite of summary climate and snow metrics for the western US at 210 m spatial resolution (Lute et al., 2021). The physical basis, large extent, and high spatial resolution of this dataset will enable novel analyses of changing hydroclimate and its implications for natural and human systems.


2020 ◽  
Vol 1 (2) ◽  
pp. 1-6
Author(s):  
Shamik Kumar Roy ◽  
Sahitya Mondal

Climate change and Environmental Hazards has been burning issues all around the world. Air Pollution is a major contribution to the Environmental Pollution. Using Big Data and machine learning algorithm to formulate a solution to this burning global issue with an idea that applies techniques of IoT (Internet of Things) and Data Analytics to predict and prevent air pollution substantially. In this paper the main concern is to judge different works which are related to the air pollution and prevention mechanism which will definitely help the researchers for this domain.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Bo Sun

Music classification is conducive to online music retrieval, but the current music classification model finds it difficult to accurately identify various types of music, which makes the classification effect of the current music classification model poor. In order to improve the accuracy of music classification, a music classification model based on multifeature fusion and machine learning algorithm is proposed. First, we obtain the music signal, and then extract various features from the classification of the music signal, and use machine learning algorithms to describe the type of music signal and the relationship between the features. The music classifier and deep belief network machine learning models in shallow logistic regression are established, respectively. Experiments were designed for these two models to verify the applicability of the model for music classification. By comparing the experimental results, it is found that the classification accuracy of the deep confidence network model is higher than that of the logistic regression model, but the number of iterations needed for its accuracy to converge is also higher than that of the logistic regression model. Compared with other current music classification models, this model reduces the time of constructing music classifier, speeds up the speed of music classification, and can identify various types of music with high precision. The accuracy of music classification is obviously improved, which verifies the superiority of this music classification model.


2018 ◽  
Author(s):  
C.H.B. van Niftrik ◽  
F. van der Wouden ◽  
V. Staartjes ◽  
J. Fierstra ◽  
M. Stienen ◽  
...  

Author(s):  
Kunal Parikh ◽  
Tanvi Makadia ◽  
Harshil Patel

Dengue is unquestionably one of the biggest health concerns in India and for many other developing countries. Unfortunately, many people have lost their lives because of it. Every year, approximately 390 million dengue infections occur around the world among which 500,000 people are seriously infected and 25,000 people have died annually. Many factors could cause dengue such as temperature, humidity, precipitation, inadequate public health, and many others. In this paper, we are proposing a method to perform predictive analytics on dengue’s dataset using KNN: a machine-learning algorithm. This analysis would help in the prediction of future cases and we could save the lives of many.


Sign in / Sign up

Export Citation Format

Share Document