scholarly journals A high-resolution synthetic bed elevation grid of the Antarctic continent

2017 ◽  
Vol 9 (1) ◽  
pp. 267-279 ◽  
Author(s):  
Felicity S. Graham ◽  
Jason L. Roberts ◽  
Ben K. Galton-Fenzi ◽  
Duncan Young ◽  
Donald Blankenship ◽  
...  

Abstract. Digital elevation models of Antarctic bed topography are smoothed and interpolated onto low-resolution ( > 1 km) grids as current observed topography data are generally sparsely and unevenly sampled. This issue has potential implications for numerical simulations of ice-sheet dynamics, especially in regions prone to instability where detailed knowledge of the topography, including fine-scale roughness, is required. Here, we present a high-resolution (100 m) synthetic bed elevation terrain for Antarctica, encompassing the continent, continental shelf, and seas south of 60° S. Although not identically matching observations, the synthetic bed surface – denoted as HRES – preserves topographic roughness characteristics of airborne and ground-based ice-penetrating radar data measured by the ICECAP (Investigating the Cryospheric Evolution of the Central Antarctic Plate) consortium or used to create the Bedmap1 compilation. Broad-scale ( > 5 km resolution) features of the Antarctic landscape are incorporated using a low-pass filter of the Bedmap2 bed elevation data. HRES has applicability in high-resolution ice-sheet modelling studies, including investigations of the interaction between topography, ice-sheet dynamics, and hydrology, where processes are highly sensitive to bed elevations and fine-scale roughness. The data are available for download from the Australian Antarctic Data Centre (doi:10.4225/15/57464ADE22F50).

2016 ◽  
Author(s):  
Felicity S. Graham ◽  
Jason L. Roberts ◽  
Ben K. Galton-Fenzi ◽  
Duncan Young ◽  
Donald Blankenship ◽  
...  

Abstract. Digital elevation models of Antarctic bed topography are heavily smoothed and interpolated onto low-resolution (> 1 km) grids as our current observed topography data are generally sparsely and unevenly sampled. This issue has potential implications for numerical simulations of ice-sheet dynamics, especially in regions prone to instability where detailed knowledge of the topography, including fine-scale roughness, is required. Here, we present a high-resolution (100 m) synthetic bed elevation terrain for the whole Antarctic continent. The synthetic bed surface preserves topographic roughness characteristics of airborne and ground-based ice-penetrating radar data from the Bedmap1 compilation and the ICECAP consortium. Broad-scale features of the Antarctic landscape are incorporated using a low-pass filter of the Bedmap2 bed-elevation data. Although not intended as a substitute for Bedmap2, the simulated bed elevation terrain has applicability in high-resolution ice-sheet modelling studies, including investigations of the interaction between topography, ice-sheet dynamics, and hydrology, where processes are highly sensitive to bed elevations. The data are available for download at the Australian Antarctic Data Centre (doi:10.4225/15/57464ADE22F50).


2021 ◽  
pp. M56-2020-7
Author(s):  
Guy J. G. Paxman

AbstractThe development of a robust understanding of the response of the Antarctic Ice Sheet to present and projected future climatic change is a matter of key global societal importance. Numerical ice sheet models that simulate future ice sheet behaviour are typically evaluated with recourse to how well they reproduce past ice sheet behaviour, which is constrained by the geological record. However, subglacial topography, a key boundary condition in ice sheet models, has evolved significantly throughout Antarctica's glacial history. Since mantle processes play a fundamental role in the generation and modification of topography over geological timescales, an understanding of the interactions between the Antarctic mantle and palaeotopography is crucial for developing more accurate simulations of past ice sheet dynamics. This chapter provides a review of the influence of the Antarctic mantle on the long-term evolution of the subglacial landscape, through processes including structural inheritance, flexural isostatic adjustment, lithospheric cooling and thermal subsidence, volcanism and dynamic topography. The uncertainties associated with reconstructing these processes through time are discussed, as are important directions for future research and the implications of the evolving subglacial topography for the response of the Antarctic Ice Sheet to climatic and oceanographic change.


2016 ◽  
Author(s):  
Janin Schaffer ◽  
Ralph Timmermann ◽  
Jan Erik Arndt ◽  
Steen Savstrup Kristensen ◽  
Christoph Mayer ◽  
...  

Abstract. The ocean plays an important role in modulating the mass balance of the polar ice sheets by interacting with the ice shelves in Antarctica and with the marine-terminating outlet glaciers in Greenland. Given that the flux of warm water onto the continental shelf and into the sub-ice cavities is steered by complex bathymetry, a detailed topography data set is an essential ingredient for models that address ice-ocean interaction. We followed the spirit of the global RTopo-1 data set and compiled consistent maps of global ocean bathymetry, upper and lower ice surface topographies and global surface height on a spherical grid with now 30-arc seconds resolution. We used the General Bathymetric Chart of the Oceans (GEBCO_2014) as the backbone and added the International Bathymetric Chart of the Arctic Ocean version 3 (IBCAOv3) and the International Bathymetric Chart of the Southern Ocean (IBCSO) version 1. While RTopo-1 primarily aimed at a good and consistent representation of the Antarctic ice sheet, ice shelves and sub-ice cavities, RTopo-2 now also contains ice topographies of the Greenland ice sheet and outlet glaciers. In particular, we aimed at a good representation of the fjord and shelf bathymetry surrounding the Greenland continent. We corrected data from earlier gridded products in the areas of Petermann Glacier, Hagen Bræ and Sermilik Fjord assuming that sub-ice and fjord bathymetries roughly follow plausible Last Glacial Maximum ice flow patterns. For the continental shelf off northeast Greenland and the floating ice tongue of Nioghalvfjerdsfjorden Glacier at about 79° N, we incorporated a high-resolution digital bathymetry model considering original multibeam survey data for the region. Radar data for surface topographies of the floating ice tongues of Nioghalvfjerdsfjorden Glacier and Zachariæ Isstrøm have been obtained from the data centers of Technical University of Denmark (DTU), Operation Icebridge (NASA/NSF) and Alfred Wegener Institute (AWI). For the Antarctic ice sheet/ice shelves, RTopo-2 largely relies on the Bedmap-2 product but applies corrections for the geometry of Getz, Abbot and Fimbul ice shelf cavities. The data set is available in full and in regional subsets in NetCDF format from the PANGAEA database at https://doi.pangaea.de/10.1594/PANGAEA.856844.


2021 ◽  
Author(s):  
Alan Aitken ◽  
Lu Li ◽  
Bernd Kulessa ◽  
Thomas Jordan ◽  
Joanne Whittaker ◽  
...  

<p>Subglacial and ice-sheet marginal sedimentary basins have very different physical properties to crystalline bedrock and, therefore, form distinct conditions that influence the flow of ice above. Sedimentary rocks are particularly soft and erodible, and therefore capable of sustaining layers of subglacial till that may deform to facilitate fast ice flow downstream. Furthermore, sedimentary rocks are relatively permeable and thus allow for enhanced fluid flux, with associated impacts on ice-sheet dynamics, including feedbacks with subglacial hydrologic systems and transport of heat to the ice-sheet bed. Despite the importance for ice-sheet dynamics there is, at present, no comprehensive record of sedimentary basins in the Antarctic continent, limiting our capacity to investigate these influences. Here we develop the first version of an Antarctic-wide spatial database of sedimentary basins, their geometries and physical attributes. We emphasise the definition of in-situ and undeformed basins that retain their primary characteristics, including relative weakness and high permeability, and therefore are more likely to influence ice sheet dynamics. We define the likely extents and nature of sedimentary basins, considering a range of geological and geophysical data, including: outcrop observations, gravity and magnetic data, radio-echo sounding data and passive and active-source seismic data. Our interpretation also involves derivative products from these data, including analyses guided by machine learning. The database includes for each basin its defining characteristics in the source datasets, and interpreted information on likely basin age, sedimentary thickness, surface morphology and tectonic type. The database is constructed in ESRI geodatabase format and is suitable for incorporation in multifaceted data-interpretation and modelling procedures. It can be readily updated given new information. We define extensive basins in both East and West Antarctica, including major regions in the Ross and Weddell Sea embayments and the Amundsen Sea region of West Antarctica, and the Wilkes, Aurora and Recovery subglacial basins of East Antarctica. The compilation includes smaller basins within crystalline-bedrock dominated areas such as the Transantarctic Mountains, the Antarctic Peninsula and Dronning Maud Land. The distribution of sedimentary basins reveals the combined influence of the tectonic and glacial history of Antarctica on the current and future configuration of the Antarctic Ice Sheet and highlights areas in which the presence of dynamically-evolving subglacial till layers and the exchange of groundwater and heat with the ice sheet bed  are more likely, contributing to dynamic behaviour of the Antarctic Ice Sheet.  </p>


2020 ◽  
Author(s):  
Samuel Helsen ◽  
Sam Vanden Broucke ◽  
Alexandra Gossart ◽  
Niels Souverijns ◽  
Nicole van Lipzig

<p>The Totten glacier is a highly dynamic outlet glacier, situated in E-Antarctica, that contains a potential sea level rise of about 3.5 meters. During recent years, this area has been influenced by sub-shelf intrusion of warm ocean currents, contributing to higher basal melt rates. Moreover, most of the ice over this area is grounded below sea level, which makes the ice shelf potentially vulnerable to the marine ice sheet instability mechanism. It is expected that, as a result of climate change, the latter mechanisms may contribute to significant ice losses in this region within the next decades, thereby contributing to future sea level rise. Up to now, most studies have been focusing on sub-shelf melt rates and the influence of the ocean, with much less attention for atmospheric processes (often ignored), which also play a key-role in determining the climatic conditions over this region. For example: surface melt is important because it contributes to hydrofracturing, a process that may lead to ice cliff instabilities. Also precipitation is an important atmospheric process, since it determines the input of mass to the ice sheet and contributes directly to the surface mass balance. In order to perform detailed studies on these processes, we need a well-evaluated climate model that represents all these processes well. Recently, the COSMO-CLM<sup>2</sup> (CCLM<sup>2</sup>) model was adapted to the climatological conditions over Antarctica. The model was evaluated by comparing a 30 year Antarctic-wide hindcast run (1986-2016) at 25 km resolution with meteorological observational products (Souverijns et al., 2019). It was shown that the model performance is comparable to other state-of-the-art regional climate models over the Antarctic region. We now applied the CCLM<sup>2</sup> model in a regional configuration over the Totten glacier area (E-Antarctica) at 5 km resolution and evaluated its performance over this region by comparing it to climatological observations from different stations. We show that the performance for temperature in the high resolution run is comparable to the performance of the Antarctic-wide run. Precipitation is, however, overestimated in the high-resolution run, especially over dome structures (Law-Dome). Therefore, we applied an orographic smoothening, which clearly improves the precipitation pattern with respect to observations. Wind speed is overestimated in some places, which is solved by increasing the surface roughness. This research frames in the context of the PARAMOUR project. Within PARAMOUR, CCLM<sup>2 </sup>is currently being coupled to an ocean model (NEMO) and an ice sheet model (f.ETISh/BISICLES) in order to understand decadal predictability over this region.</p>


2018 ◽  
Vol 56 (1) ◽  
pp. 539-546 ◽  
Author(s):  
Xiaoli Su ◽  
C. K. Shum ◽  
Junyi Guo ◽  
Ian M. Howat ◽  
Chungyen Kuo ◽  
...  

2018 ◽  
Vol 12 (1) ◽  
pp. 49-70 ◽  
Author(s):  
Werner M. J. Lazeroms ◽  
Adrian Jenkins ◽  
G. Hilmar Gudmundsson ◽  
Roderik S. W. van de Wal

Abstract. Basal melting below ice shelves is a major factor in mass loss from the Antarctic Ice Sheet, which can contribute significantly to possible future sea-level rise. Therefore, it is important to have an adequate description of the basal melt rates for use in ice-dynamical models. Most current ice models use rather simple parametrizations based on the local balance of heat between ice and ocean. In this work, however, we use a recently derived parametrization of the melt rates based on a buoyant meltwater plume travelling upward beneath an ice shelf. This plume parametrization combines a non-linear ocean temperature sensitivity with an inherent geometry dependence, which is mainly described by the grounding-line depth and the local slope of the ice-shelf base. For the first time, this type of parametrization is evaluated on a two-dimensional grid covering the entire Antarctic continent. In order to apply the essentially one-dimensional parametrization to realistic ice-shelf geometries, we present an algorithm that determines effective values for the grounding-line depth and basal slope in any point beneath an ice shelf. Furthermore, since detailed knowledge of temperatures and circulation patterns in the ice-shelf cavities is sparse or absent, we construct an effective ocean temperature field from observational data with the purpose of matching (area-averaged) melt rates from the model with observed present-day melt rates. Our results qualitatively replicate large-scale observed features in basal melt rates around Antarctica, not only in terms of average values, but also in terms of the spatial pattern, with high melt rates typically occurring near the grounding line. The plume parametrization and the effective temperature field presented here are therefore promising tools for future simulations of the Antarctic Ice Sheet requiring a more realistic oceanic forcing.


1996 ◽  
Vol 23 ◽  
pp. 374-381 ◽  
Author(s):  
Laurence Brisset ◽  
Frédérique Rémy

The ERS-1 satellite has delivered altimetric data since 1992, enabling us to map most of the Antarctic ice-sheet topography south to 82° S with better precision than all previous techniques. An algorithm has been developed such that the accuracy of the height data reaches the sub-metre level. As a first step, an inverse method has been designed to map the large-scale global topography, which is of interest to the study of the ice-sheet flow dynamics. As a second step, an adapted inverse algorithm displays precisely the short-scale undulations which are controlled by the bedrock below the ice. Finally, variations in the back-scattered altimetric signal allow us to map directly the kilometre-scale roughness that is related to the basal-flow conditions. Together, these maps constitute an important data base for modelling the ice sheet.


Eos ◽  
2016 ◽  
Vol 97 ◽  
Author(s):  
Sarah Stanley

A comprehensive collection of variation in Earth's gravity could aid studies of the Antarctic geoid and of Antarctica's geology and ice sheet dynamics.


2020 ◽  
Author(s):  
Costanza Rossi ◽  
Paola Cianfarra ◽  
Francesco Salvini

<p>The spiral troughs of the North Polar Layered deposits on Mars are deep depressions that dissect the Planum Boreum ice cap. These are enigmatic structures whose puzzling origin is still under debate. Advanced hypotheses on their genesis and evolution range between erosional to structural scenario. In this work, a double approach was followed to explore the structural/tectonic origin of the spiral troughs by means of Hybrid Cellular Automata (HCA) numerical modelling and lineament domain analysis. The SHARAD profile data were used to replicate the ice internal layering architecture associated to buried troughs in Gemina Lingula. Analysis of the lineament domains automatically detected at the ice surface from satellite images of the Mars Orbiter Camera strengthened the structural/tectonic interpretation of their origin and evolution. Similar, twofold approach was used for the investigation of a terrestrial analog identified in the Antarctic ice sheet. It presents at depth blind structures recognized as fractures/faults produced by ice sheet dynamics. Radargrams of Operation IceBridge mission and images from Sentinel-2 were used to produce a tectonic model that was in turn compared with the Planum Boreum one. Obtained results, and their comparison, show that the troughs of Gemina Lingula result from the activity of low-angle normal faults with listric geometry. The activity of listric faults is modelled and compared with the antarctic analog. At the surface the detected lineament domains confirm the tectonic setting by tracing the buried trough/fault orientations. The proposed tectonic model refers to extensional regime characterized by the presence of a deep detachment connecting the troughs at depth. This represents an internal ductile layer placed at depth greater than 1000 m whose kinematics induces the troughs/faults deformation. The extensional tectonics developed in Planum Boreum is possibly related to the ice cap collapse that induces internal dynamics. In this way, katabatic winds play a secondary role by maintaining at the surface the troughs nearly orthogonal to their directions.</p>


Sign in / Sign up

Export Citation Format

Share Document