scholarly journals MAREDAT: towards a World Ocean Atlas of MARine Ecosystem DATa

2012 ◽  
Vol 5 (2) ◽  
pp. 1077-1106 ◽  
Author(s):  
E. T. Buitenhuis ◽  
M. Vogt ◽  
R. Moriarty ◽  
N. Bednaršek ◽  
S. C. Doney ◽  
...  

Abstract. We present a summary of biomass data for 11 Plankton Functional Types (PFTs) plus phytoplankton pigment data, compiled as part of the MARine Ecosystem biomass DATa (MAREDAT) initiative. The goal of the MAREDAT initiative is to provide global gridded data products with coverage of all biological components of the global ocean ecosystem. This special issue is the first step towards achieving this. The PFTs presented here include picophytoplankton, diazotrophs, coccolithophores, Phaeocystis, diatoms, picoheterotrophs, microzooplankton, foraminifers, mesozooplankton, pteropods and macrozooplankton. All variables have been gridded onto a World Ocean Atlas (WOA) grid (1° × 1° × 33 vertical levels × monthly climatologies). The data show that (1) the global total heterotrophic biomass (2.0–6.4 Pg C) is at least as high as the total autotrophic biomass (0.5–2.6 Pg C excluding nanophytoplankton and autotrophic dinoflagellates), (2) the biomass of zooplankton calcifiers (0.9–2.3 Pg C) is substantially higher than that of coccolithophores (0.01–0.14 Pg C), (3) patchiness of biomass distribution increases with organism size, and (4) although zooplankton biomass measurements below 200 m are rare, the limited measurements available suggest that Bacteria and Archaea are not the only heterotrophs in the deep sea. More data will be needed to characterize ocean ecosystem functioning and associated biogeochemistry in the Southern Hemisphere and below 200 m. Microzooplankton database: doi:10.1594/PANGAEA.779970.

2013 ◽  
Vol 5 (2) ◽  
pp. 227-239 ◽  
Author(s):  
E. T. Buitenhuis ◽  
M. Vogt ◽  
R. Moriarty ◽  
N. Bednaršek ◽  
S. C. Doney ◽  
...  

Abstract. We present a summary of biomass data for 11 plankton functional types (PFTs) plus phytoplankton pigment data, compiled as part of the MARine Ecosystem biomass DATa (MAREDAT) initiative. The goal of the MAREDAT initiative is to provide, in due course, global gridded data products with coverage of all planktic components of the global ocean ecosystem. This special issue is the first step towards achieving this. The PFTs presented here include picophytoplankton, diazotrophs, coccolithophores, Phaeocystis, diatoms, picoheterotrophs, microzooplankton, foraminifers, mesozooplankton, pteropods and macrozooplankton. All variables have been gridded onto a World Ocean Atlas (WOA) grid (1° × 1° × 33 vertical levels × monthly climatologies). The results show that abundance is much better constrained than their carbon content/elemental composition, and coastal seas and other high productivity regions have much better coverage than the much larger volumes where biomass is relatively low. The data show that (1) the global total heterotrophic biomass (2.0–4.6 Pg C) is at least as high as the total autotrophic biomass (0.5–2.4 Pg C excluding nanophytoplankton and autotrophic dinoflagellates); (2) the biomass of zooplankton calcifiers (0.03–0.67 Pg C) is substantially higher than that of coccolithophores (0.001–0.03 Pg C); (3) patchiness of biomass distribution increases with organism size; and (4) although zooplankton biomass measurements below 200 m are rare, the limited measurements available suggest that Bacteria and Archaea are not the only important heterotrophs in the deep sea. More data will be needed to characterise ocean ecosystem functioning and associated biogeochemistry in the Southern Hemisphere and below 200 m. Future efforts to understand marine ecosystem composition and functioning will be helped both by further archiving of historical data and future sampling at new locations. Microzooplankton database: doi:10.1594/PANGAEA.779970 All MAREDAT databases: http://www.pangaea.de/search?&q=maredat


2014 ◽  
Vol 11 (12) ◽  
pp. 3397-3407 ◽  
Author(s):  
A. E. F. Prowe ◽  
M. Pahlow ◽  
S. Dutkiewicz ◽  
A. Oschlies

Abstract. Marine ecosystem models used to investigate how global change affects ocean ecosystems and their functioning typically omit pelagic plankton diversity. Diversity, however, may affect functions such as primary production and their sensitivity to environmental changes. Here we use a global ocean ecosystem model that explicitly resolves phytoplankton diversity by defining subtypes within four phytoplankton functional types (PFTs). We investigate the model's ability to capture diversity effects on primary production under environmental change. An idealized scenario with a sudden reduction in vertical mixing causes diversity and primary-production changes that turn out to be largely independent of the number of coexisting phytoplankton subtypes. The way diversity is represented in the model provides a small number of niches with respect to nutrient use in accordance with the PFTs defined in the model. Increasing the number of phytoplankton subtypes increases the resolution within the niches. Diversity effects such as niche complementarity operate between, but not within PFTs, and are constrained by the variety of traits and trade-offs resolved in the model. The number and nature of the niches formulated in the model, for example via trade-offs or different PFTs, thus determines the diversity effects on ecosystem functioning captured in ocean ecosystem models.


2012 ◽  
Vol 4 (1) ◽  
pp. 37-46 ◽  
Author(s):  
E. T. Buitenhuis ◽  
W. K. W. Li ◽  
D. Vaulot ◽  
M. W. Lomas ◽  
M. R. Landry ◽  
...  

Abstract. The smallest marine phytoplankton, collectively termed picophytoplankton, have been routinely enumerated by flow cytometry since the late 1980s during cruises throughout most of the world ocean. We compiled a database of 40 946 data points, with separate abundance entries for Prochlorococcus, Synechococcus and picoeukaryotes. We use average conversion factors for each of the three groups to convert the abundance data to carbon biomass. After gridding with 1° spacing, the database covers 2.4% of the ocean surface area, with the best data coverage in the North Atlantic, the South Pacific and North Indian basins, and at least some data in all other basins. The average picophytoplankton biomass is 12 ± 22 μg C l−1 or 1.9 g C m−2. We estimate a total global picophytoplankton biomass of 0.53–1.32 Pg C (17–39% Prochlorococcus, 12–15% Synechococcus and 49–69% picoeukaryotes), with an intermediate/best estimate of 0.74 Pg C. Future efforts in this area of research should focus on reporting calibrated cell size and collecting data in undersampled regions. http://doi.pangaea.de/10.1594/PANGAEA.777385


2012 ◽  
Vol 5 (1) ◽  
pp. 147-185 ◽  
Author(s):  
K. Leblanc ◽  
J. Arístegui ◽  
L. Armand ◽  
P. Assmy ◽  
B. Beker ◽  
...  

Abstract. Phytoplankton identification and abundance data are now commonly feeding plankton distribution databases worldwide. This study is a first attempt to compile the largest possible body of data available from different databases as well as from individual published or unpublished datasets regarding diatom distribution in the world ocean. The data obtained originate from time series studies as well as spatial studies. This effort is supported by the Marine Ecosystem Model Inter-Comparison Project (MAREMIP), which aims at building consistent datasets for the main Plankton Functional Types (PFT) in order to help validate biogeochemical ocean models by using carbon (C) biomass derived from abundance data. In this study we collected over 293 000 individual geo-referenced data points with diatom abundances from bottle and net sampling. Sampling site distribution was not homogeneous, with 58% of data in the Atlantic, 20% in the Arctic, 12% in the Pacific, 8% in the Indian and 1% in the Southern Ocean. A total of 136 different genera and 607 different species were identified after spell checking and name correction. Only a small fraction of these data were also documented for biovolumes and an even smaller fraction was converted to C biomass. As it is virtually impossible to reconstruct everyone's method for biovolume calculation, which is usually not indicated in the datasets, we decided to undertake the effort to document, for every distinct species, the minimum and maximum cell dimensions, and to convert all the available abundance data into biovolumes and C biomass using a single standardized method. Statistical correction of the database was also adopted to exclude potential outliers and suspicious data points. The final database contains 90 648 data points with converted C biomass. Diatom C biomass calculated from cell sizes spans over eight orders of magnitude. The mean diatom biomass for individual locations, dates and depths is 141.19 μg C l−1, while the median value is 11.16 μg C l−1. Regarding biomass distribution, 19% of data are in the range 0–1 μg C l−1, 29% in the range 1–10 μg C l−1, 31% in the range 10–100 μg C l−1, 18% in the range 100–1000 μg C l−1, and only 3% >1000 μg C l−1. Interestingly, less than 50 species contributed to >90% of global biomass, among which centric species were dominant. Thus, placing significant efforts on cell size measurements, process studies and C quota calculations on these species should considerably improve biomass estimates in the upcoming years. A first-order estimate of the diatom biomass for the global ocean ranges from 449 to 558 Tg C, which converts to 5 to 6 Tmol Si and to an average Si biomass turnover rate of 0.11 to 0.20 d−1. Link to the dataset: preliminary link http://doi.pangaea.de/10.1594/PANGAEA.777384.


2012 ◽  
Vol 4 (1) ◽  
pp. 149-165 ◽  
Author(s):  
K. Leblanc ◽  
J. Arístegui ◽  
L. Armand ◽  
P. Assmy ◽  
B. Beker ◽  
...  

Abstract. Phytoplankton identification and abundance data are now commonly feeding plankton distribution databases worldwide. This study is a first attempt to compile the largest possible body of data available from different databases as well as from individual published or unpublished datasets regarding diatom distribution in the world ocean. The data obtained originate from time series studies as well as spatial studies. This effort is supported by the Marine Ecosystem Model Inter-Comparison Project (MAREMIP), which aims at building consistent datasets for the main plankton functional types (PFTs) in order to help validate biogeochemical ocean models by using carbon (C) biomass derived from abundance data. In this study we collected over 293 000 individual geo-referenced data points with diatom abundances from bottle and net sampling. Sampling site distribution was not homogeneous, with 58% of data in the Atlantic, 20% in the Arctic, 12% in the Pacific, 8% in the Indian and 1% in the Southern Ocean. A total of 136 different genera and 607 different species were identified after spell checking and name correction. Only a small fraction of these data were also documented for biovolumes and an even smaller fraction was converted to C biomass. As it is virtually impossible to reconstruct everyone's method for biovolume calculation, which is usually not indicated in the datasets, we decided to undertake the effort to document, for every distinct species, the minimum and maximum cell dimensions, and to convert all the available abundance data into biovolumes and C biomass using a single standardized method. Statistical correction of the database was also adopted to exclude potential outliers and suspicious data points. The final database contains 90 648 data points with converted C biomass. Diatom C biomass calculated from cell sizes spans over eight orders of magnitude. The mean diatom biomass for individual locations, dates and depths is 141.19 μg C l−1, while the median value is 11.16 μg C l−1. Regarding biomass distribution, 19% of data are in the range 0–1 μg C l−1, 29% in the range 1–10 μg C l−1, 31% in the range 10–100 μg C l−1, 18% in the range 100–1000 μg C l−1, and only 3% > 1000 μg C l−1. Interestingly, less than 50 species contributed to > 90% of global biomass, among which centric species were dominant. Thus, placing significant efforts on cell size measurements, process studies and C quota calculations of these species should considerably improve biomass estimates in the upcoming years. A first-order estimate of the diatom biomass for the global ocean ranges from 444 to 582 Tg C, which converts to 3 to 4 Tmol Si and to an average Si biomass turnover rate of 0.15 to 0.19 d−1. Link to the dataset: doi:10.1594/PANGAEA.777384.


2012 ◽  
Vol 5 (1) ◽  
pp. 221-242 ◽  
Author(s):  
E. T. Buitenhuis ◽  
W. K. W. Li ◽  
D. Vaulot ◽  
M. W. Lomas ◽  
M. Landry ◽  
...  

Abstract. The smallest marine phytoplankton, collectively termed picophytoplankton, have been routinely enumerated by flow cytometry since the late 1980s, during cruises throughout most of the world ocean. We compiled a database of 40 946 data points, with separate abundance entries for Prochlorococcus, Synechococcus and picoeukaryotes. We use average conversion factors for each of the three groups to convert the abundance data to carbon biomass. After gridding with 1° spacing, the database covers 2.4% of the ocean surface area, with the best data coverage in the North Atlantic, the South Pacific and North Indian basins. The average picophytoplankton biomass is 12 ± 22 μg C l−1 or 1.9 g C m−2. We estimate a total global picophytoplankton biomass of 0.53–0.74 Pg C (17–39% Prochlorococcus, 12–15% Synechococcus and 49–69% picoeukaryotes). Future efforts in this area of research should focus on reporting calibrated cell size, and collecting data in undersampled regions.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2060
Author(s):  
Elvira Buonocore ◽  
Umberto Grande ◽  
Pier Paolo Franzese ◽  
Giovanni F. Russo

The biotic and abiotic assets of the marine environment form the “marine natural capital” embedded in the global ocean. Marine natural capital provides the flow of “marine ecosystem services” that are directly used or enjoyed by people providing benefits to human well-being. They include provisioning services (e.g., food), regulation and maintenance services (e.g., carbon sequestration and storage, and coastal protection), and cultural services (e.g., tourism and recreational benefits). In recent decades, human activities have increased the pressures on marine ecosystems, often leading to ecosystem degradation and biodiversity loss and, in turn, affecting their ability to provide benefits to humans. Therefore, effective management strategies are crucial to the conservation of healthy and diverse marine ecosystems and to ensuring their long-term generation of goods and services. Biophysical, economic, and sociocultural assessments of marine ecosystem services are much needed to convey the importance of natural resources to managers and policy makers supporting the development and implementation of policies oriented for the sustainable management of marine resources. In addition, the accounting of marine ecosystem service values can be usefully complemented by their mapping to enable the identification of priority areas and management strategies and to facilitate science–policy dialogue. Given this premise, this study aims to review trends and evolution in the concept of marine ecosystem services. In particular, the global scientific literature on marine ecosystem services is explored by focusing on the following main aspects: the definition and classification of marine ecosystem services; their loss due to anthropogenic pressures, alternative assessment, and mapping approaches; and the inclusion of marine ecosystem services into policy and decision-making processes.


2020 ◽  
Vol 12 (22) ◽  
pp. 3777
Author(s):  
Yuhui Li ◽  
Yun Qiu ◽  
Jianyu Hu ◽  
Cherry Aung ◽  
Xinyu Lin ◽  
...  

Multisource satellite remote sensing data and the World Ocean Atlas 2018 (WOA18) temperature and salinity dataset have been used to analyze the spatial distribution, variability and possible forcing mechanisms of the upwelling off Manaung Island, Myanmar. Signals of upwelling exist off the coasts of Manaung Island, in western Myanmar during spring. It appears in February, reaches its peak in March and decays in May. Low-temperature (<28.3 °C) and high-salinity (>31.8 psu) water at the surface of this upwelling zone is caused by the upwelling of seawater from a depth below 100 m. The impact of the upwelling on temperature is more significant in the subsurface layer than that in the surface layer. In contrast, the impact of the upwelling on salinity in the surface layer is more significant. Further research reveals that the remote forcing from the equator predominantly induces the evolution of the upwelling, while the local wind forcing also contributes to strengthen the intensity of the upwelling during spring.


2013 ◽  
Vol 864-867 ◽  
pp. 2335-2339
Author(s):  
Ya Pan Liu ◽  
Jian Cheng Kang ◽  
Jiong Zhu ◽  
Qin Chen Han

Using salinity database of World Ocean Atlas 2009 (WOA09) issued by NOAA in 2010, refer the range of high-salinity tongue to indicate the strength about high-salinity water, from the perspective of structural changes of salinity; the water exchange through Ryukyu Islands upper 500 m have been analyzed, the results show that: due to Ryukyu Trough, currents on both sides of Ryukyu Islands occur exchange, for upper 500 m, high-salinity water in east of the Ryukyu Islands mainly invade the west waterthe Kuroshio in East China Sea; the intrusion strength is powerful from the depth of 100 m to 200 m, and the 150 m layer is the core layer of high-salinity water intrusion; the high-salinity water at the east of Ryukyu Islands invades the Kuroshio are stronger in March, May, June, September, October and November, are weaker in April and December.


Sign in / Sign up

Export Citation Format

Share Document