scholarly journals Dynamics of the Askja caldera July 2014 landslide, Iceland, from seismic signal analysis: precursor, motion and aftermath

Author(s):  
Anne Schöpa ◽  
Wei-An Chao ◽  
Bradley Lipovsky ◽  
Niels Hovius ◽  
Robert S. White ◽  
...  

Abstract. Using data from a network of 58 seismic stations, we characterise a large landslide that occurred at the southeastern corner of the Askja caldera, Iceland, on 21 July 2014, including its precursory tremor and mass wasting aftermath. Our study is motivated by the need for deeper generic understanding of the processes operating not only at the time of catastrophic slope failure, but also in the preparatory phase and during the transient into the subsequent stable state. In addition, it is prompted by the high hazard potential of the steep caldera lake walls at Askja as tsunami waves created by the landslide reached famous tourist spots 60 m above the lake level. Since direct observations of the event are lacking, the seismic data give valuable details on the dynamics of this landslide episode. The excellent seismic data quality and coverage of the stations of the Askja network made it possible to jointly analyse the long- and short-period signals of the landslide to obtain information about the triggering, initiation, timing, and propagation of the slide. The seismic signal analysis and a landslide force history inversion of the long-period seismic signals showed that the Askja landslide was a single, large event starting at the SE corner of the caldera lake at 23:24:05 UTC and propagating to the NW in the following 2 min. The bulk sliding mass was 7–16 × 1010 kg, equivalent to a collapsed volume of 35–80 × 106 m3, and the centre of mass was displaced horizontally downslope by 1260 ± 250 m during landsliding. The seismic records of stations up to 30 km away from the landslide source area show a tremor signal that started 30 min before the main landslide failure. It is harmonic, with a fundamental frequency of 2.5 Hz and shows time-dependent changes of its frequency content. We attribute the complex tremor signal to accelerating and decelerating stick-slip motion on failure planes at the base and the sides of the landslide body. The accelerating motion culminated in aseismic slip of the landslide visible as a drop in the seismic amplitudes down to the background noise level 2 min before the landslide high-energy signal begins. We propose that the seismic signal of the precursory tremor may be developed as an indicator for landslide early-warning systems. The 8 hours after the main landslide failure are characterised by smaller slope failures originating from the destabilised caldera wall decaying in frequency and magnitude. We introduce the term afterslides for this subsequent, declining slope activity after a large landslide.

2018 ◽  
Vol 6 (2) ◽  
pp. 467-485 ◽  
Author(s):  
Anne Schöpa ◽  
Wei-An Chao ◽  
Bradley P. Lipovsky ◽  
Niels Hovius ◽  
Robert S. White ◽  
...  

Abstract. Landslide hazard motivates the need for a deeper understanding of the events that occur before, during, and after catastrophic slope failures. Due to the destructive nature of such events, in situ observation is often difficult or impossible. Here, we use data from a network of 58 seismic stations to characterise a large landslide at the Askja caldera, Iceland, on 21 July 2014. High data quality and extensive network coverage allow us to analyse both long- and short-period signals associated with the landslide, and thereby obtain information about its triggering, initiation, timing, and propagation. At long periods, a landslide force history inversion shows that the Askja landslide was a single, large event starting at the SE corner of the caldera lake at 23:24:05 UTC and propagating to the NW in the following 2 min. The bulk sliding mass was 7–16 × 1010 kg, equivalent to a collapsed volume of 35–80 × 106 m3. The sliding mass was displaced downslope by 1260 ± 250 m. At short periods, a seismic tremor was observed for 30 min before the landslide. The tremor is approximately harmonic with a fundamental frequency of 2.3 Hz and shows time-dependent changes of its frequency content. We attribute the seismic tremor to stick-slip motion along the landslide failure plane. Accelerating motion leading up to the catastrophic slope failure culminated in an aseismic quiescent period for 2 min before the landslide. We propose that precursory seismic signals may be useful in landslide early-warning systems. The 8 h after the main landslide failure are characterised by smaller slope failures originating from the destabilised caldera wall decaying in frequency and magnitude. We introduce the term “afterslides” for this subsequent, declining slope activity after a large landslide.


Geophysics ◽  
2022 ◽  
pp. 1-102
Author(s):  
Hang Wang ◽  
Yunfeng Chen ◽  
Omar M. Saad ◽  
Wei Chen ◽  
Yapo Abolé Serge Innocent Oboué ◽  
...  

Local slope is an important attribute that can help distinguish seismic signals from noise. Based on optimal slope estimation, many filtering methods can be designed to enhance the signal-to-noise ratio (S/N) of noisy seismic data. We present an open-source Matlab code package for local slope estimation and corresponding structural filtering. This package includes 2D and 3D examples with two main executable scripts and related sub-functions. All code files are in the Matlab format. In each main script, local slope is estimated based on the well-known plane wave destruction algorithm. Then, the seismic data are transformed to the flattened domain by utilizing this slope information. Further, the smoothing operator can be effectively applied in the flattened domain. We introduce the theory and mathematics related to these programs, and present the synthetic and field data examples to show the usefulness of this open-source package. The results of both local slope estimation and structural filtering demonstrate that this package can be conveniently and effectively applied to the seismic signal analysis and denoising.


2012 ◽  
Vol 17 (4) ◽  
pp. 319-326 ◽  
Author(s):  
Zbigniew Chaniecki ◽  
Krzysztof Grudzień ◽  
Tomasz Jaworski ◽  
Grzegorz Rybak ◽  
Andrzej Romanowski ◽  
...  

Abstract The paper presents results of the scale-up silo flow investigation in based on accelerometer signal analysis and Wi-Fi transmission, performed in distributed laboratory environment. Prepared, by the authors, a set of 8 accelerometers allows to measure a three-dimensional acceleration vector. The accelerometers were located outside silo, on its perimeter. The accelerometers signal changes allowed to analyze dynamic behavior of solid (vibrations/pulsations) at silo wall during discharging process. These dynamic effects are caused by stick-slip friction between the wall and the granular material. Information about the material pulsations and vibrations is crucial for monitoring the interaction between silo construction and particle during flow. Additionally such spatial position of accelerometers sensor allowed to collect information about nonsymmetrical flow inside silo.


2021 ◽  
Author(s):  
Pimpawee Sittipan ◽  
Pisanu Wongpornchai

Some of the important petroleum reservoirs accumulate beneath the seas and oceans. Marine seismic reflection method is the most efficient method and is widely used in the petroleum industry to map and interpret the potential of petroleum reservoirs. Multiple reflections are a particular problem in marine seismic reflection investigation, as they often obscure the target reflectors in seismic profiles. Multiple reflections can be categorized by considering the shallowest interface on which the bounces take place into two types: internal multiples and surface-related multiples. Besides, the multiples can be categorized on the interfaces where the bounces take place, a difference between long-period and short-period multiples can be considered. The long-period surface-related multiples on 2D marine seismic data of the East Coast of the United States-Southern Atlantic Margin were focused on this research. The seismic profile demonstrates the effectiveness of the results from predictive deconvolution and the combination of surface-related multiple eliminations (SRME) and parabolic Radon filtering. First, predictive deconvolution applied on conventional processing is the method of multiple suppression. The other, SRME is a model-based and data-driven surface-related multiple elimination method which does not need any assumptions. And the last, parabolic Radon filtering is a moveout-based method for residual multiple reflections based on velocity discrimination between primary and multiple reflections, thus velocity model and normal-moveout correction are required for this method. The predictive deconvolution is ineffective for long-period surface-related multiple removals. However, the combination of SRME and parabolic Radon filtering can attenuate almost long-period surface-related multiple reflections and provide a high-quality seismic images of marine seismic data.


1981 ◽  
Vol 71 (4) ◽  
pp. 1351-1360
Author(s):  
Tom Goforth ◽  
Eugene Herrin

abstract An automatic seismic signal detection algorithm based on the Walsh transform has been developed for short-period data sampled at 20 samples/sec. Since the amplitude of Walsh function is either +1 or −1, the Walsh transform can be accomplished in a computer with a series of shifts and fixed-point additions. The savings in computation time makes it possible to compute the Walsh transform and to perform prewhitening and band-pass filtering in the Walsh domain with a microcomputer for use in real-time signal detection. The algorithm was initially programmed in FORTRAN on a Raytheon Data Systems 500 minicomputer. Tests utilizing seismic data recorded in Dallas, Albuquerque, and Norway indicate that the algorithm has a detection capability comparable to a human analyst. Programming of the detection algorithm in machine language on a Z80 microprocessor-based computer has been accomplished; run time on the microcomputer is approximately 110 real time. The detection capability of the Z80 version of the algorithm is not degraded relative to the FORTRAN version.


2004 ◽  
Vol 17 (S1) ◽  
pp. 117-122 ◽  
Author(s):  
Zhou-min Xie ◽  
En-fu Wang ◽  
Guo-hong Zhang ◽  
Guo-cun Zhao ◽  
Xu-geng Chen

2021 ◽  
Vol 331 ◽  
pp. 07006
Author(s):  
Wahyu Kurniawan ◽  
Daryono ◽  
IDK Kerta ◽  
Bayu Pranata ◽  
Tri Winugroho

The tsunami of Sunda Strait occurred on December 22, 2018, at 21:03 West Indonesia Time (zone). An eruption of Mount Anak Krakatau caused an eruption that triggered a landslide on the slopes of Mount Anak Krakatau covering an area of 64 hectares that hit the coastal area of western Banten and southern Lampung and resulted in 437 deaths, 14.059 people were injured, and 33.721 people were displaced. Before the tsunami, signal transmissions (gaps) at the Lava seismograph station installed on the body of Mount Anak Krakatau experienced broken so that Mount Anak Krakatau Observation Post could not record volcanic earthquake signals since December 22, 2018, at 21.03 West Indonesia Time (zone). Given these facts, proper monitoring and analysis were required to monitor and analyze the source of ground vibrations originating from the eruption of Mount Anak Krakatau. Therefore, this study aims to confirm the eruptive activity of Mount Anak Krakatau based on seismic monitoring and analysis sourced from the BMKG's seismic sensor network. The method the author uses is by monitoring the seismic signal recorded by the seismometer and analyzing the seismic signal using the Seiscomp3 software. By the results of monitoring and analysis of seismic data, it was found that the location of the center of the ground shaking was on Mount Anak Krakatau with a magnitude of 3.4, and a depth of 1 km. To anticipate similar tsunami events in the future, it is very necessary to have a tsunami early warning system originating from volcanic activity and volcanic body avalanches.


2019 ◽  
Vol 34 (1) ◽  
Author(s):  
Tumpal Bernhard Nainggolan ◽  
Said Muhammad Rasidin ◽  
Imam Setiadi

Multiple often and always appear in marine seismic data due to very high acoustic impedance contrasts. These events have undergone more than one reflection. This causes the signal to arrive back at the receiver at an erroneous time, which, in turn, causes false results and can result in data misinterpretation. Several types of multiple suppression have been studied in literature. Methods that attenuate multiples can be classified into three broad categories: deconvolution methods; filtering methods and wavefield prediction subtraction methods. The study area is situated on Seram Sea in between 131°15’E – 132°45’E and 3°0’S – 4°0’S, Seram Trough which is located beneath Seram Sea at northern part of the Banda-Arc – Australian collision zone and currently the site of contraction between Bird’s Head and Seram. This research uses predictive deconvolution and FK-filter to attenuate short period multiple from their move out, then continued by SRME method to predict multiple that cannot be attenuated from previous method, then followed by Radon transform to attenuate multiple that still left and cannot be attenuated by SRME method. The result of each method then compared to each other to see how well multiple attenuated. Predictive deconvolution and F-K filter could not give satisfactory result especially complex area where multiple in dipping event is not periodic, SRME method successfully attenuate multiple especially in near offset multiple without need subsurface information, while SRME method fails to attenuate long offset multiple, combination of SRME method and Radon transform can give satisfactory result with careful selection of the Radon transform parameters because it can obscure some primary reflectors. Based on geological interpretation, Seram Trough is built by dominant structural style of deposited fold and thrust belt. The deposited fold and thrust belt has a complexly fault geometry from western zone until eastern of seismic line.


2020 ◽  
Vol 39 (7) ◽  
pp. 480-487
Author(s):  
Patrick Smith ◽  
Brandon Mattox

The P-Cable high-resolution 3D marine acquisition system tows many short, closely separated streamers behind a small source. It can provide 3D seismic data of very high temporal and spatial resolution. Since the system is containerized and has small dimensions, it can be deployed at short notice and relatively low cost, making it attractive for time-lapse seismic reservoir monitoring. During acquisition of a 3D high-resolution survey in the Gulf of Mexico in 2014, a pair of sail lines were repeated to form a time-lapse seismic test. We processed these in 2019 to evaluate their geometric and seismic repeatability. Geometric repetition accuracy was excellent, with source repositioning errors below 10 m and bin-based receiver positioning errors below 6.25 m. Seismic data comparisons showed normalized root-mean-square difference values below 10% between 40 and 150 Hz. Refinements to the acquisition system since 2014 are expected to further improve repeatability of the low-frequency components. Residual energy on 4D difference seismic data was low, and timing stability was good. We conclude that the acquisition system is well suited to time-lapse seismic surveying in areas where the reservoir and time-lapse seismic signal can be adequately imaged by small-source, short-offset, low-fold data.


2019 ◽  
Vol 625 ◽  
pp. A99 ◽  
Author(s):  
P. Benaglia ◽  
S. del Palacio ◽  
C. H. Ishwara-Chandra ◽  
M. De Becker ◽  
N. L. Isequilla ◽  
...  

The massive binary system WR 11 (γ2-Velorum) has recently been proposed as the counterpart of a Fermi source. If this association is correct, this system would be the second colliding wind binary detected in GeV γ-rays. However, the reported flux measurements from 1.4 to 8.64 GHz fail to establish the presence of nonthermal (synchrotron) emission from this source. Moreover, WR 11 is not the only radio source within the Fermi detection box. Other possible counterparts have been identified in archival data, some of which present strong nonthermal radio emission. We conducted arcsec-resolution observations toward WR 11 at very low frequencies (150–1400 MHz) where the nonthermal emission – if existent and not absorbed – is expected to dominate. We present a catalog of more than 400 radio emitters, among which a significant portion are detected at more than one frequency, including limited spectral index information. Twenty-one of these radio emitters are located within the Fermi significant emission. A search for counterparts for this last group pointed at MOST 0808–471; this source is 2′ away from WR 11 and is a promising candidate for high-energy emission, having a resolved structure along 325–1390 MHz. For this source, we reprocessed archive interferometric data up to 22.3 GHz and obtained a nonthermal radio spectral index of − 0.97 ± 0.09. However, multiwavelength observations of this source are required to establish its nature and to assess whether it can produce (part of) the observed γ-rays. WR 11 spectrum follows a spectral index of 0.74 ± 0.03 from 150 to 230 GHz, consistent with thermal emission. We interpret that any putative synchrotron radiation from the colliding-wind region of this relatively short-period system is absorbed in the photospheres of the individual components. Notwithstanding, the new radio data allowed us to derive a mass-loss rate of 2.5 × 10−5 M⊙ yr−1, which, according to the latest models for γ-ray emission in WR 11, would suffice to provide the required kinetic power to feed nonthermal radiation processes.


Sign in / Sign up

Export Citation Format

Share Document