scholarly journals Morphometric properties of alternate bars and water discharge: a laboratory investigation

2020 ◽  
Author(s):  
Marco Redolfi ◽  
Matilde Welber ◽  
Mattia Carlin ◽  
Marco Tubino ◽  
Walter Bertoldi

Abstract. The formation of alternate bars in straightened river reaches represents a fundamental process of river morphodynamics that has received great attention in the last decades. It is well-established that migrating alternate bars arise from an autogenic, instability mechanism occurring when the channel width-to-depth ratio is sufficiently large. While several empirical and theoretical relations for predicting how bar height and length depend on the key dimensionless parameters are available, there is a lack of direct, quantitative information about the dependence of bar properties on flow discharge. We performed a series of experiments in a long, mobile-bed flume with fixed and straight banks, at different discharges. The self-formed bed topography was surveyed, different metrics were analysed to obtain quantitative information about bar height and shape, and results were interpreted in the light of existing theoretical models. The analysis reveals that the shape of alternate bars highly depends on their formative discharge, with remarkable variations in the harmonic composition and a strong decreasing trend of the skewness of the bed elevation. Similarly, the height of alternate bars clearly decreases with the water discharge, in quantitative agreement with theoretical predictions. However, the disappearance of bars when discharge exceeds a critical threshold is not as sharp as expected, due to the formation of so-called diagonal bars. This work provides basic information for modelling and interpreting short-term morphological variations during individual flood events and long-term trajectories due to alterations of the hydrological regime.

2020 ◽  
Vol 8 (3) ◽  
pp. 789-808
Author(s):  
Marco Redolfi ◽  
Matilde Welber ◽  
Mattia Carlin ◽  
Marco Tubino ◽  
Walter Bertoldi

Abstract. The formation of alternate bars in straightened river reaches represents a fundamental process of river morphodynamics that has received great attention in the last decades. It is well-established that migrating alternate bars arise from an autogenic instability mechanism occurring when the channel width-to-depth ratio is sufficiently large. While several empirical and theoretical relations are available for predicting how bar height and length depend on the key dimensionless parameters, there is a lack of direct, quantitative information about the dependence of bar properties on flow discharge. We performed a series of experiments in a long, mobile-bed flume with fixed and straight banks at different discharges. The self-formed bed topography was surveyed, different metrics were analyzed to obtain quantitative information about bar height and shape, and results were interpreted in the light of existing theoretical models. The analysis reveals that the shape of alternate bars highly depends on their formative discharge, with remarkable variations in the harmonic composition and a strong decreasing trend of the skewness of the bed elevation. Similarly, the height of alternate bars clearly decreases with the water discharge, in quantitative agreement with theoretical predictions. However, the disappearance of bars when discharge exceeds a critical threshold is not as sharp as expected due to the formation of so-called “diagonal bars”. This work provides basic information for modeling and interpreting short-term morphological variations during individual flood events and long-term trajectories due to alterations of the hydrological regime.


2021 ◽  
Author(s):  
Mattia Carlin ◽  
Marco Redolfi ◽  
Marco Tubino

<p>Alternate bars are large bedforms, characterized by an ordered sequence of scour and deposition zones, which often appear in rivers. It is well proved by many experimental, theoretical and numerical works that the formation of migrating alternate bars results form an intrinsic instability mechanism occurring when the width-to-depth ratio of the channel is larger than a critical threshold. Although a large amount of literature is available to describe equilibrium bar properties under steady flow conditions, much less information exists about the evolution of bars when flow discharge is variable in time. In a recent work we investigated how the long-term, average properties of bars respond to changes of the hydrological regime. This average state represents the net result of a multitude of flood events, each of them producing a different morphological alteration. However, a systematic description of how changes of the bar properties depend on the characteristics of the individual floods is still missing, as existing studies are limited to a small number of flood events, not sufficient to make a statistical description of the riverbed response. In this work, we aim at studying the time evolution of the bar amplitude in a relatively straight, channelized reach of a gravel bed river. Specifically, we considered a 10 km-long reach of the Alpine Rhine River, for which a detailed record of flow stages is available for the period from 1984 to 2010. This is accomplished by modelling the bed evolution through the theoretically-based model of Colombini et al. (1987), here applied by considering a time-varying basic flow and numerically integrating the bar amplitude. Compared with classical approaches based on numerically solving the two-dimensional shallow-water equations, our procedure allows for calculating the bar response over long periods of time with a very low computational cost. This enables for modelling different scenarios of hydrological alterations, due to dam constructions or climate changes, and to statistically analyse the expected impact on bar evolution. Assuming that bars cannot evolve when the flow is too low to fully submerge the bar crests, we identify 200 morphologically-active flood events, covering about 1.1% of the total duration of the flow series. Model results reveal that moderate flow events tend to increase the bar amplitude, while larger floods reduce the bar height. However, the value of the peak discharge alone is not sufficient to explain the morphological changes, as an important (and opposite) role is also played by the duration of the events. Specifically, longer floods tend to promote an increase of the bar height during the receding phase, which implies that a strong reduction of the bar amplitude requires intense, but relatively short flood events.</p>


2014 ◽  
Vol 754 ◽  
pp. 232-249 ◽  
Author(s):  
Marius Ungarish ◽  
Catherine A. Mériaux ◽  
Cathy B. Kurz-Besson

AbstractWe investigate the motion of high-Reynolds-number gravity currents (GCs) in a horizontal channel of V-shaped cross-section combining lock-exchange experiments and a theoretical model. While all previously published experiments in V-shaped channels were performed with the special configuration of the full-depth lock, we present the first part-depth experiment results. A fixed volume of saline, that was initially of length $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}x_0$ and height $h_0$ in a lock and embedded in water of height $H_0$ in a long tank, was released from rest and the propagation was recorded over a distance of typically $ 30 x_0$. In all of the tested cases the current displays a slumping stage of constant speed $u_N$ over a significant distance $x_S$, followed by a self-similar stage up to the distance $x_V$, where transition to the viscous regime occurs. The new data and insights of this study elucidate the influence of the height ratio $H = H_0/h_0$ and of the initial Reynolds number ${\mathit{Re}}_0 = (g^{\prime }h_0)^{{{1/2}}} h_0/ \nu $, on the motion of the triangular GC; $g^{\prime }$ and $\nu $ are the reduced gravity and kinematic viscosity coefficient, respectively. We demonstrate that the speed of propagation $u_N$ scaled with $(g^{\prime } h_0)^{{{1/2}}}$ increases with $H$, while $x_S$ decreases with $H$, and $x_V \sim [{\mathit{Re}}_0(h_0/x_0)]^{{4/9}}$. The initial propagation in the triangle is 50 % more rapid than in a standard flat-bottom channel under similar conditions. Comparisons with theoretical predictions show good qualitative agreements and fair quantitative agreement; the major discrepancy is an overpredicted $u_N$, similar to that observed in the standard flat bottom case.


2018 ◽  
Vol 40 ◽  
pp. 02034 ◽  
Author(s):  
Giulio Calvani ◽  
Simona Francalanci ◽  
Luca Solari

The planform morphology of a river reach is the result of the combined actions of sediment motion (erosion, transport and deposition), hydrological regime, development and growth of vegetation. However, the interactions among these processes are still poorly understood and rarely investigated in laboratory flume experiments. In these experiments and also in numerical modelling, vegetation is usually represented by rigid cylinders, although it is widely recognized that this schematization cannot reproduce the effects of root stabilization and binding on riverbed sediment. In this work, we focus on the effects of added vegetation on morphological dynamics of alternate bars in a straight channel by means of flume experiments. We performed laboratory experiments reproducing hydraulic conditions that are typical of gravel bed rivers, in terms of water depth, bed slope and bed load; these conditions led to the formation of freely migrating alternate bars. We then employed rigid vegetation that was deployed on the reproduced alternate bars according to field observations. Various vegetation scenarios, in terms of density and spatial arrangement, were deployed in the flume experiments such to mimic different maintenance strategies. Results show the effects of rigid vegetation on the alternate bar configuration on the overall topographic pattern, the main alternate bar characteristics (such as amplitude and wavelength) and migration rate.


2018 ◽  
Vol 618 ◽  
pp. A27 ◽  
Author(s):  
M. C. Powell ◽  
B. Husemann ◽  
G. R. Tremblay ◽  
M. Krumpe ◽  
T. Urrutia ◽  
...  

Aims. We probe the radiatively-efficient, hot wind feedback mode in two nearby luminous unobscured (type 1) AGN from the Close AGN Reference Survey (CARS), which show intriguing kpc-scale arc-like features of extended [O III]ionized gas as mapped with VLT-MUSE. We aimed to detect hot gas bubbles that would indicate the existence of powerful, galaxy-scale outflows in our targets, HE 0227–0931 and HE 0351+0240, from deep (200 ks) Chandra observations. Methods. By measuring the spatial and spectral properties of the extended X-ray emission and comparing with the sub kpc-scale IFU data, we are able to constrain feedback scenarios and directly test if the ionized gas is due to a shocked wind. Results. No extended hot gas emission on kpc-scales was detected. Unless the ambient medium density is low (n H  ∼  1 cm−3 at 100 pc), the inferred upper limits on the extended X-ray luminosities are well below what is expected from theoretical models at matching AGN luminosities. Conclusions. We conclude that the highly-ionized gas structures on kpc scales are not inflated by a hot outflow in either target, and instead are likely caused by photoionization of pre-existing gas streams of different origins. Our nondetections suggest that extended X-ray emission from an AGN-driven wind is not universal, and may lead to conflicts with current theoretical predictions.


Author(s):  
Julien Chopin ◽  
Dominic Vella ◽  
Arezki Boudaoud

We consider a thin elastic sheet adhering to a stiff substrate by means of the surface tension of a thin liquid layer. Debonding is initiated by imposing a vertical displacement at the centre of the sheet and leads to the formation of a delaminated region or ‘blister’. This experiment reveals that the perimeter of the blister takes one of three different forms depending on the vertical displacement imposed. As this displacement is increased, we observe first circular, then undulating and finally triangular blisters. We obtain theoretical predictions for the observed features of each of these three families of blisters. The theory is built upon the Föppl–von Kármán equations for thin elastic plates and accounts for the surface energy of the liquid. We find good quantitative agreement between our theoretical predictions and experimental results, demonstrating that all three families are governed by different balances between elastic and capillary forces. Our results may bear on micrometric tapered devices and other systems, where elastic and adhesive forces are in competition.


1971 ◽  
Vol 44 (5) ◽  
pp. 1380-1390
Author(s):  
J. M. Charrier ◽  
A. N. Gent

Abstract When a thin-walled rubber tube containing an incompressible fluid is compressed between two parallel plates the internal pressure rise depends on the restraints in the contact regions. When there is no friction in the contact zone the pressure rise is lower than when slip is prevented, so that the tube, regarded as a spring, has a compression stiffness which depends on the frictional conditions. The same considerations apply to the inflation of a tube between fixed parallel plates. In this case unstable inflation sets in at a critical pressure when the interfaces are frictionless; the tube develops a pronounced bulge when this pressure is approached. Simple theoretical relations are derived for the internal pressure and compressive force for both these deformations, and for both boundary conditions, assuming that the rubber is neo-Hookean in elastic behavior. Experimental measurements on tubes of different dimensions are shown to be in reasonably good quantitative agreement with these theoretical predictions in all cases.


Author(s):  
Lorna J. Ayton

The extended introduction in this paper reviews the theoretical modelling of leading- and trailing-edge noise, various bioinspired aerofoil adaptations to both the leading and trailing edges of blades, and how these adaptations aid in the reduction of aerofoil–turbulence interaction noise. Attention is given to the agreement between current theoretical predictions and experimental measurements, in particular, for turbulent interactions at the trailing edge of an aerofoil. Where there is a poor agreement between theoretical models and experimental data the features neglected from the theoretical models are discussed. Notably, it is known that theoretical predictions for porous trailing-edge adaptations do not agree well with experimental measurements. Previous works propose the reason for this: theoretical models do not account for surface roughness due to the porous material and thus omit a key noise source. The remainder of this paper, therefore, presents an analytical model, based upon the acoustic analogy, to predict the far-field noise due to a rough surface at the trailing edge of an aerofoil. Unlike previous roughness noise models which focus on roughness over an infinite wall, the model presented here includes diffraction by a sharp edge. The new results are seen to be in better agreement with experimental data than previous models which neglect diffraction by an edge. This new model could then be used to improve theoretical predictions for far-field noise generated by turbulent interactions with a (rough) porous trailing edge. This article is part of the theme issue ‘Frontiers of aeroacoustics research: theory, computation and experiment’.


2010 ◽  
Vol 646 ◽  
pp. 127-136 ◽  
Author(s):  
MARC AVILA ◽  
ASHLEY P. WILLIS ◽  
BJÖRN HOF

The onset of shear flow turbulence is characterized by turbulent patches bounded by regions of laminar flow. At low Reynolds numbers localized turbulence relaminarizes, raising the question of whether it is transient in nature or becomes sustained at a critical threshold. We present extensive numerical simulations and a detailed statistical analysis of the lifetime data, in order to shed light on the sources of the discrepancies present in the literature. The results are in excellent quantitative agreement with recent experiments and show that turbulent lifetimes increase super-exponentially with Reynolds number. In addition, we provide evidence for a lower bound below which there are no meta-stable characteristics of the transients, i.e. the relaminarization process is no longer memoryless.


Author(s):  
Stefano Lenci ◽  
Giuseppe Rega

Abstract The problem of avoiding the homoclinic bifurcation of the hilltop saddle of the Helmholtz equation by a shrewd choice of the shape of the external excitation is considered. The distance between the perturbed manifolds is computed by means of the Melnikov’s method, and its dependence on the shape of the excitation is emphasized. Successively, it is shown how it is possible to determine a theoretical optimal excitation which maximizes the distance between stable and unstable manifolds for a fixed excitation amplitude or, equivalently, which maximizes the critical amplitude for homoclinic bifurcation. The practical case of a finite number of subharmonics is considered in detail. The corresponding optimal problems are solved numerically and the related optimal excitations are given. It is shown that when the number of subharmonics increases, the critical threshold for homoclinic bifurcation tends to double with respect to the reference case of harmonic excitation. Some numerical simulations are finally performed to verify the theoretical predictions and the effectiveness of the control procedure.


Sign in / Sign up

Export Citation Format

Share Document