compression stiffness
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 9)

H-INDEX

8
(FIVE YEARS 0)

2021 ◽  
Vol 1203 (2) ◽  
pp. 022067
Author(s):  
Magdalena Kowalska

Abstract Hardening Soil model with the small strain extension (HSS) is lately one of the most popular constitutive models to describe soil behaviour. It is versatile – includes the phenomena of shear strength, stress history, dilatancy, volumetric and shear hardening, hyperbolic stress-strain relationship in axial compression, stiffness dependency on stress and its degradation with strain, as well as the regain of the high stiffness after sharp loading reversals. Even though the model is advanced and complex, accordingly to its authors, it is relatively easy to calibrate based on results of standard tests and empirical formulas. In this paper an attempt was undertaken to estimate the parameters of untypical anthropogenic soils – mixtures of sand and scrap tyre rubber in order to build a database for future numerical analyses. A literature review was conducted and, eventually, the material parameters were determined based on results of a series of laboratory tests (cyclic and monotonic triaxial with bender elements, direct shear) published by researchers of Wollongong University of Australia.


BioResources ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. 7006-7020
Author(s):  
Ricardo Acosta ◽  
Jorge A. Montoya ◽  
Carlos A. Londoño

Lignocellulosic materials that are thermally treated via hydrolysis react chemically, modifying their internal structure, which in turn modifies their physical and mechanical properties, as well as their dimensional stability. Bamboo (Guadua angustifolia Kunth) samples 3 years old, without nodes and without skin, obtained from their basal area were subjected to thermal treatment with temperatures between 160 and 200 °C and duration times between 1 h and 4 h. The severity of the thermal treatment affects the modulus of rupture and modulus of elasticity in compression. The modulus of rupture increased at temperatures up to 180 °C with treatment times of 2 h, i.e., the severity, defined as the product of the temperature and the time varied between 320 (°C*h) and 360 (°C*h). An inflection point was obtained at a temperature of 180 °C after 2 h with a maximum value of 115.1 MPa. The modulus of elasticity increased as the temperature and time increased. The modulus of rupture and the modulus of elasticity of the treated samples increased up to 14.7% and 36.1%, respectively, compared to the not thermal treated samples. Additionally, when the density increased, the resistance and the compression stiffness also increased.


2021 ◽  
Author(s):  
Henrik O. Werner ◽  
Florian Schäfer ◽  
Frank Henning ◽  
Luise Kärger

During forming of complex fiber-metal laminates (FML), compressive stress zones occur. In pure textile forming, these compressive stresses typically lead to extensive wrinkling. In FML forming, however, wrinkling is partly hindered by the metal layers. Thus, combined stress states occur, where compression influences the deformation. In forming simulation, these compressive stresses can lead to erroneous formation of shear bands within the fabric layer, if the deformation behavior is not modelled correctly. Simple fabric models neither consider interactions between roving directions nor model interactions between membrane strains and shear strains. More advanced invariant-based hyperelastic material models are able to capture these interactions, but only consider tension and shear, while disregarding compression. A common assumption is to set the fabric compression stiffness close to zero. Experimentally, the in-plane fabric compression stiffness has not been determined so far. However, in FML forming, the compression stiffness and the combined compression-tension-shear behavior becomes relevant. In this article, the authors summarize and analyze the capacity of state-of-the-art fabric material models to predict the deformation behavior of fabrics under combined loading. Based on these findings, conclusions are drawn for a new macroscopic modeling approach for woven fabrics, including coupling of tension, compression and shear.


2021 ◽  
Vol 12 ◽  
pp. 215145932199861
Author(s):  
Tadashi Kawamura ◽  
Hiroaki Minehara ◽  
Ryo Tazawa ◽  
Terumasa Matsuura ◽  
Rina Sakai ◽  
...  

Introduction: The failure rate of operations involving the cephalomedullary nail technique for unstable femoral trochanteric fractures is 3-12%. Changing the reduction strategy may improve the stability. This study aimed to confirm whether reducing the proximal fragment with the medial calcar contact, as opposed to utilizing an intramedullary reduction, would improve the stability of such fractures. Materials and Methods: The unstable femoral trochanteric fracture model was created with fixation by cephalomedullary nails in 22 imitation bones. The 2 reduction patterns were as follows: one was with the proximal head-neck fragment external to the distal bone in the frontal plane and anterior in the sagittal plane as “Extramedullary,” while the other was the opposite reduction position, that is, bone in the frontal plane and sagittal plane as “Intramedullary.” We evaluated the tip-apex distance, compression stiffness, change in femoral neck-shaft angle, amount of blade telescoping, and diameter of the distal screw hole after the compression test. Statistical analysis was conducted using the Mann-Whitney U test. Results: No significant differences were seen in compression stiffness ( p = 0.804) and femoral neck-shaft angle change ( p = 0.644). Although the “Extramedullary” tip-apex distance was larger than the “Intramedullary” distance ( p = 0.001), it indicated clinically acceptable lengths. The amount of blade telescoping and the distal screw hole diameter were significantly larger in “Intramedullary” than in “Extramedullary” ( p < 0.001, p = 0.019, respectively). Our results showed that “Intramedullary” had significantly larger blade telescoping and distal screw hole diameters than “Extramedullary,” and contrary to our hypothesis, no significant differences were seen in compression stiffness and femoral neck-shaft angle change. Conclusions: As opposed to the “Intramedullary” reduction pattern, the biomechanical properties of the “Extramedullary” reduction pattern improved stability during testing and decreased sliding.


2020 ◽  
Vol 13 (3) ◽  
pp. 593-602
Author(s):  
M. T. S. A. CARDOSO ◽  
M. C. V. LIMA

Abstract The behavior of slender precast beams related to lateral stability in the transitional and in service phases is worrying. The presence of geometric imperfections aggravates and makes the problems of instability more susceptible. The main objective of this work is to evaluate the behavior of concrete beams on elastomeric bearings and to analyze the influence of variables such as: concrete strength, wind load and bearing compression stiffness. For the numerical nonlinear analysis the software ANSYS based on the Finite Element Method was used. The analyses show that the influence of the strength of the concrete is significant in the lateral stability of the beam. The wind load represents a considerable decrease in the contact (lift off) between the beam and the bearing. Finally, the combination of these factors can result in a critical stress situation in the beam, and it is not possible to have equilibrium, causing its toppling.


Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2279
Author(s):  
Leszek Czechowski ◽  
Gabriela Kmita-Fudalej ◽  
Włodzimierz Szewczyk

This work concerns the analysis of egg packages subjected to compression. Experimental investigations were carried out to determine the curves of compression and maximum loads. To compare packages accessible on the market, several different shapes of egg packages were tested after being conditioned in air with a relative humidity of 50%. Several paper structures in stock were compressed. By validating the experiment results, numerical computations based on the finite element method (FEM) were executed. The estimations of a numerical model were performed with the use of the perfect plasticity of paper and with the assumption of large strains and deflections. Our own two structures of egg packaging were taken into account: basic and modified. The material of the packages was composed of 90% recovered paper and 10% coconut fibres. This paper involved the numerical modelling of such complex packaging. Moreover, our research showed that introducing several features into the structures of the packaging can improve the stiffness and raise the maximum load. Thanks to the application of ribs and grooves, the strength ratio and compression stiffness, in comparison to the basic tray, increased by approximately 23.4% and 36%, respectively. Moreover, the obtained indexes of modified trays were higher than the majority of the studied market trays.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Heng Liu ◽  
Jie Hong ◽  
Shilun Ruan ◽  
Zheng Li ◽  
Gengdong Cheng

Curvic couplings are frequently used in aeroengine rotors. The stiffness of the curvic couplings is of guiding significance to the engineering design of aeroengine rotors as it is significantly different from that of continuous structures. In this paper, definitions and relations of the structure parameters for a curvic coupling are firstly introduced. Based on this proposed mechanical framework, a novel mechanical model accounting for the stiffness weakening under shearing, compression, bending, and torsion is developed for curvic couplings. In this model, a three-spring system, which consists of two types of springs, is adopted to describe the equivalent stiffness of a pair of meshing teeth of curvic couplings. The spring stiffness is obtained by employing the plane strain analysis of a discretized tooth with trapezoid pieces. Subsequently, the stiffness matrix of curvic couplings is deduced based on the deformation compatibility of each tooth and the force balance of the whole structure. A series of analyses of curvic couplings with various structure types are performed to demonstrate the mechanism behind the proposed model, and the results are verified against those obtained from finite element analyses. It is shown in this study that the pressure angle is the major factor affecting the stiffness of curvic couplings, while the compression stiffness and bending stiffness are more sensitive than other stiffnesses. Furthermore, the stiffness of curvic couplings is considerably smaller compared to that of continuous structures, indicating the importance of appropriate modelling of stiffness weakening in the design of aeroengine rotors.


2018 ◽  
Vol 10 (11) ◽  
pp. 4118 ◽  
Author(s):  
Colin Rose ◽  
Dan Bergsagel ◽  
Thibault Dufresne ◽  
Evi Unubreme ◽  
Tianyao Lyu ◽  
...  

The construction industry creates significant volumes of waste timber, much of which has residual quality and value that dissipates in conventional waste management. This research explored the novel concept of reusing secondary timber as feedstock for cross-laminated timber (CLT). If cross-laminated secondary timber (CLST) can replace conventional CLT, structural steel and reinforced concrete in some applications, this constitutes upcycling to displace materials of greater environmental impacts. The fabrication process and mechanical properties of CLST were tested in small-scale laboratory experiments, which showed no significant difference between the compression stiffness and strength of CLST and a control. Finite element modelling suggested that typical minor defects in secondary timber have only a small effect on CLST panel stiffness in compression and bending. Mechanically Jointed Beams Theory calculations to examine the potential impacts of secondary timber ageing on CLST panels found that this has little effect on compression stiffness if only the crosswise lamellae are replaced. Since use of secondary timber to make CLST has a more significant effect on bending stiffness, effective combinations of primary and secondary timber and their appropriate structural applications are proposed. The article concludes with open research questions to advance this concept towards commercial application.


Sign in / Sign up

Export Citation Format

Share Document