scholarly journals Practical considerations for enhanced-resolution coil-wrapped Distributed Temperature Sensing

Author(s):  
K. P. Hilgersom ◽  
T. H. M. van Emmerik ◽  
A. Solcerova ◽  
W. R. Berghuijs ◽  
J. S. Selker ◽  
...  

Abstract. Fibre optic Distributed Temperature Sensing (DTS) is widely applied in earth sciences. Many applications require a spatial resolution higher than the provided by the DTS instrument. Measurements at these higher resolutions can be achieved with a fibre optic cable helically wrapped on a cylinder. The effect of the probe construction, such as its material, shape, and diameter, on the performance has been poorly understood. In this article, we study datasets obtained from a laboratory experiment using different cable and construction diameters, and three field experiments using different construction characteristics. This study shows that the construction material, shape, diameter, and cable attachment method can have a significant influence on DTS temperature measurements. We present a qualitative and quantitative approximation of errors introduced through the choice of auxiliary construction, influence of solar radiation, coil diameter, and cable attachment method. Our results provide insight into factors that influence DTS measurements, and we present a number of solutions to minimize these errors. These practical considerations allow designers of future DTS measurement setups to improve their environmental temperature measurements.

2016 ◽  
Vol 5 (1) ◽  
pp. 151-162 ◽  
Author(s):  
Koen Hilgersom ◽  
Tim van Emmerik ◽  
Anna Solcerova ◽  
Wouter Berghuijs ◽  
John Selker ◽  
...  

Abstract. Fibre optic distributed temperature sensing (DTS) is widely applied in Earth sciences. Many applications require a spatial resolution higher than that provided by the DTS instrument. Measurements at these higher resolutions can be achieved with a fibre optic cable helically wrapped on a cylinder. The effect of the probe construction, such as its material, shape, and diameter, on the performance has been poorly understood. In this article, we study data sets obtained from a laboratory experiment using different cable and construction diameters, and three field experiments using different construction characteristics. This study shows that the construction material, shape, diameter, and cable attachment method can have a significant influence on DTS temperature measurements. We present a qualitative and quantitative approximation of errors introduced through the choice of auxiliary construction, influence of solar radiation, coil diameter, and cable attachment method. Our results provide insight into factors that influence DTS measurements, and we present a number of solutions to minimize these errors. These practical considerations allow designers of future DTS measurement set-ups to improve their environmental temperature measurements.


2009 ◽  
Vol 60 (5) ◽  
pp. 1127-1134 ◽  
Author(s):  
R. P. S. Schilperoort ◽  
F. H. L. R. Clemens

This paper introduces the application of fibre-optic distributed temperature sensing (DTS) in combined sewer systems. The DTS-technique uses a fibre-optic cable that is inserted into a combined sewer system in combination with a laser instrument that performs measurements and logs the data. The DTS-technique allows monitoring in-sewer temperatures with dense spatial and temporal resolutions. The installation of a fibre-optic cable in a combined sewer system has proven feasible. The use of a single instrument in an easy accessible and safe location that can simultaneously monitor up to several hundreds of monitoring locations makes the DTS set-up easy in use and nearly free of maintenance. Temperature data from a one-week monitoring campaign in an 1,850 m combined sewer system shows the level of detail with which in-sewer processes that affect wastewater temperatures can be studied. Individual discharges from house-connections can be tracked in time and space. With a dedicated cable configuration the confluence of wastewater flows can be observed with a potential to derive the relative contributions of contributary flows to a total flow. Also, the inflow and in-sewer propagation of stormwater can be monitored.


2021 ◽  
Author(s):  
Rainer Hilland ◽  
Andreas Christen ◽  
Roland Vogt

<p>Taylor’s frozen turbulence hypothesis is the most critical assumption through which time-resolving sensors may be used to derive statistics of the turbulent spatial field. Namely, it relates temporal autocorrelation to spatial correlation via the mean wind speed and is invoked in almost all boundary layer field work. Nevertheless, the conditions and scales over which Taylor’s hypothesis is valid remain poorly understood in the atmospheric boundary layer.</p> <p>As part of the Namib Turbulence Experiment (NamTEX) campaign in March 2020, a pseudo-3D fibre-optic distributed temperature sensing (DTS) array was installed within a 300 x 300 m area in the Namib desert. The array is X-shaped in plan view and contains 16 measurement heights from 0.45 m to 2.85 m. Fibre-optic sensing provides air temperature measurements at unprecedented spatio-temporal density (0.25 m horizontally, 0.17 m vertically, and 1 Hz) and was coupled with a vertical array of traditional sonic anemometer point measurements to investigate the relationship between spatial and temporal temperature fields. The Namib provides an ideal location for fundamental boundary layer research: homogenous flat surfaces, no vegetation, little moisture, strong solar forcing, regular and repeated clear-sky conditions, and a wide range of atmospheric stabilities.</p> <p>Using the NamTEX DTS array we present the first field investigation of Taylor’s hypothesis that considers boundary layer stability and is independent of wind direction. A novel method of 2d horizontal cross-correlation between all possible points of a single height of the DTS is employed to produce spatial ‘maps’ of the turbulent flow, whose velocity, direction, and size may be tracked through time.</p>


2012 ◽  
Vol 16 (6) ◽  
pp. 1775-1792 ◽  
Author(s):  
S. Krause ◽  
T. Blume ◽  
N. J. Cassidy

Abstract. This paper investigates the patterns and controls of aquifer–river exchange in a fast-flowing lowland river by the conjunctive use of streambed temperature anomalies identified with Fibre-optic Distributed Temperature Sensing (FO-DTS) and observations of vertical hydraulic gradients (VHG). FO-DTS temperature traces along this lowland river reach reveal discrete patterns with "cold spots" indicating groundwater up-welling. In contrast to previous studies using FO-DTS for investigation of groundwater–surface water exchange, the fibre-optic cable in this study was buried in the streambed sediments, ensuring clear signals despite fast flow and high discharges. During the observed summer baseflow period, streambed temperatures in groundwater up-welling locations were found to be up to 1.5 °C lower than ambient streambed temperatures. Due to the high river flows, the cold spots were sharp and distinctly localized without measurable impact on down-stream surface water temperature. VHG patterns along the stream reach were highly variable in space, revealing strong differences even at small scales. VHG patterns alone are indicators of both, structural heterogeneity of the stream bed as well as of the spatial heterogeneity of the groundwater–surface water exchange fluxes and are thus not conclusive in their interpretation. However, in combination with the high spatial resolution FO-DTS data we were able to separate these two influences and clearly identify locations of enhanced exchange, while also obtaining information on the complex small-scale streambed transmissivity patterns responsible for the very discrete exchange patterns. The validation of the combined VHG and FO-DTS approach provides an effective strategy for analysing drivers and controls of groundwater–surface water exchange, with implications for the quantification of biogeochemical cycling and contaminant transport at aquifer–river interfaces.


2021 ◽  
Vol 14 (3) ◽  
pp. 2409-2427
Author(s):  
Olli Peltola ◽  
Karl Lapo ◽  
Ilkka Martinkauppi ◽  
Ewan O'Connor ◽  
Christoph K. Thomas ◽  
...  

Abstract. The suitability of a fibre-optic distributed temperature sensing (DTS) technique for observing atmospheric mixing profiles within and above a forest was quantified, and these profiles were analysed. The spatially continuous observations were made at a 125 m tall mast in a boreal pine forest. Airflows near forest canopies diverge from typical boundary layer flows due to the influence of roughness elements (i.e. trees) on the flow. Ideally, these complex flows should be studied with spatially continuous measurements, yet such measurements are not feasible with conventional micrometeorological measurements with, for example, sonic anemometers. Hence, the suitability of DTS measurements for studying canopy flows was assessed. The DTS measurements were able to discern continuous profiles of turbulent fluctuations and mean values of air temperature along the mast, providing information about mixing processes (e.g. canopy eddies and evolution of inversion layers at night) and up to third-order turbulence statistics across the forest–atmosphere interface. Turbulence measurements with 3D sonic anemometers and Doppler lidar at the site were also utilised in this analysis. The continuous profiles for turbulence statistics were in line with prior studies made at wind tunnels and large eddy simulations for canopy flows. The DTS measurements contained a significant noise component which was, however, quantified, and its effect on turbulence statistics was accounted for. Underestimation of air temperature fluctuations at high frequencies caused 20 %–30 % underestimation of temperature variance at typical flow conditions. Despite these limitations, the DTS measurements should prove useful also in other studies concentrating on flows near roughness elements and/or non-stationary periods, since the measurements revealed spatio-temporal patterns of the flow which were not possible to be discerned from single point measurements fixed in space.


Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2451
Author(s):  
Cedric Kechavarzi ◽  
Philip Keenan ◽  
Xiaomin Xu ◽  
Yi Rui

The hydraulic performance of sewers is a major public concern in industrialised countries. In this study, fibre optic distributed temperature sensing (DTS) is used to monitor the discharge of wastewater for three months to assess the performance of a long underground foul sewer in a village in the UK. DTS cables were installed in the invert of sewer pipes to obtain distributed temperature change data along the sewer network. DTS generates a series of two-dimensional data sets (temperature against distance) that can be visualised in waterfall plots to help identify anomalies. The spatial and temperature resolutions are 2 m and 0.2–0.3 °C, respectively. The monitoring data clearly identify high-temperature plumes, which represent the flow of household wastewater in the sewer. Based on the analysis of the waterfall plots, it is found that the flow velocity is about 0.14 m/s under normal conditions. When continuous moderate rain or heavy rain occurs, water backs up from the water treatment plant to upstream distances of up to 400 m and the water flow velocity in the sewer decreases sharply to about 0.03 m/s, which demonstrates the ability of the DTS to localise anomalies in the sewer network.


Sign in / Sign up

Export Citation Format

Share Document