scholarly journals WAYS v1: a hydrological model for root zone water storage simulation on a global scale

2019 ◽  
Vol 12 (12) ◽  
pp. 5267-5289 ◽  
Author(s):  
Ganquan Mao ◽  
Junguo Liu

Abstract. The soil water stored in the root zone is a critical variable for many applications, as it plays a key role in several hydrological and atmospheric processes. Many studies have been conducted to obtain reliable information on soil water in the root zone layer. However, most of them are mainly focused on the soil moisture within a certain depth rather than the water stored in the entire rooting system. In this work, a hydrological model named the Water And ecosYstem Simulator (WAYS) is developed to simulate the root zone water storage (RZWS) on a global scale. The model is based on a well-validated lumped model and has now been extended to a distribution model. To reflect the natural spatial heterogeneity of the plant rooting system across the world, a key variable that influences RZWS, i.e., root zone storage capacity (RZSC), is integrated into the model. The newly developed model is first evaluated based on runoff and RZWS simulations across 10 major basins. The results show the ability of the model to mimic RZWS dynamics in most of the regions through comparison with proxy data, the normalized difference infrared index (NDII). The model is further evaluated against station observations, including flux tower and gauge data. Despite regional differences, generally good performance is found for both the evaporation and discharge simulations. Compared to existing hydrological models, WAYS's ability to resolve the field-scale spatial heterogeneity of RZSC and simulate RZWS may offer benefits for many applications, e.g., agriculture and land–vegetation–climate interaction investigations. However, the results from this study suggest an additional evaluation of RZWS is required for the regions where the NDII might not be the correct proxy.

2019 ◽  
Author(s):  
Ganquan Mao ◽  
Junguo Liu

Abstract. The soil water stored in the root zone is a critical variable for many applications as it plays key role in several hydrological and atmospheric processes. Many studies have been done to obtain reliable soil water information in the root zone layer. However, most of them are mainly focused on the soil moisture in a certain depth rather than the water stored in the entire rooting system. In this work, a hydrological model is developed to simulate the root zone water storage (RZWS) on a global scale. The model is based on a well validated lumped model and has been extended now to a distribution model. To reflect the natural spatial heterogeneity of the plant rooting system across the world, a key variable that influencing the RZWS, i.e. root zone storage capacity (RZSC), is integrated into the model. The newly developed model is evaluated on runoff and RZWS simulation across ten major basins. The evaluation of runoff indicates the strong capacity of the model for monthly simulation with a good performance on time series and distribution depiction. Results also show the ability of the model for RZWS dynamics mimicing in most of the regions. This model may offer benefits for many applications due to its ability for RZWS simulation. However, attentions need to also be paid for application as the high latitude regions are not investigated by this work due to the incomplete latitudinal coverage of the RZSC. Therefore, the performance of the model in such regions are not justified.


2021 ◽  
Author(s):  
XinRui Luo ◽  
Shaoda Li ◽  
Wunian Yang ◽  
Liang Liu ◽  
Xiaolu Tang

<p>Soil water storage serves as a vital resource of the terrestrial ecosystems, and it can significantly influence water cycle and carbon cycling with the frequent occurrence of soil drought induced by land-atmosphere feedbacks. However, there are high variations and uncertainties of root zone soil water storage. This study applied comparison map profile (CMP), Mann-Kendall test, Theil-Sen estimate and partial correlation analysis to (1) estimate the global root zone (0~1 m) soil water storage, (2) and investigate the spatial and temporal patterns from 1981 to 2017 at the global scale, (3) and their relationships with environmental drivers (precipitation, temperature, potential evaportranspiration) using three soil moisture (SM) products – ERA-5, GLDAS and MERRA-2. Globally, the average annual soil water storage from 1981 to 2017 varied significantly, ranging from 138.3 (100 Pg a<sup>-1</sup>, 1 Pg = 10<sup>15</sup> g) in GLDAS to 342.6 (100 Pg a<sup>-1</sup>) in ERA-5. Soil water storage of the three SM products consistently showed a decreasing trend. However, the temporal trend of soil water storage among different climate zones was different, showing a decreasing trend in tropical, temperate and cold zones, but an increasing trend in polar regions. On the other hand, temporal trends in arid regions differed from ERA-5, GLDAS and MERRA-2. Spatially, the SM products differed greatly, particularly for boreal areas with D value higher for 2500 Mg ha<sup>-1</sup> a<sup>-1</sup> and CC value lower for -0.2 between GLDAS and MERRA-2. Over 1981 to 2017, water storage of more than 50% of the global land area suffered from a decreasing trend, especially in Africa and Northeastern of China. Precipitation was the main dominated driver for variation of soil water storage, and distribution varied in different SM products. In conclusion, a global decreasing trend in soil water storage indicate a water loss from soils, and how the water loss affecting carbon sink in terrestrial ecosystems under ongoing climate change needs further investigation.</p>


2006 ◽  
Vol 86 (4) ◽  
pp. 675-690 ◽  
Author(s):  
E. Mapfumo ◽  
D S Chanasyk ◽  
C. L.A. Chaikowsky

A study was conducted at Syncrude Canada Ltd., Alberta, to evaluate the simulation of soil volumetric water content from the reclaimed slopes of the Southwest Sand Storage Facility using the Root Zone Water Quality Model (RZWQM). Soil water content measurements were conducted every 2 wk using a neutron moisture meter in 2001 (dry year) and 2002 (wet year). Two types of calibration and evaluation were performed: first, calibration using 2001 weather data (dry year) and evaluation using 2002 weather data (wet year) (herein referred to as method 1); second, calibration using 2002 weather data (wet year) and evaluation using 2001 weather data (dry year) herein referred to as (method 2). Results from the method 1 calibration for each tube indicated modeling efficiencies (EF) between −0.27 and 0.90, coefficients of determination (r2) between 0.13 and 0.97, and deviation (D, as %) of simulated from measured values of less than 5%. The model evaluation by tube location following method 1 calibration indicated EF values between −3.80 and 0.56, whereas r2 values ranged between 0.08 and 0.82. Although five out of eight tubes had D values > 5%, all except for one tube had D values < 20%. Method 2 calibration results for each tube indicated EF values of −0.34 to 0.85, r2 values of 0.07 to 0.85 and all D values < 5%. Results of the method 2 model evaluation by tube location indicated EF values of −10.15 to 0.75 (overall EF = −0.84), r2 values of 0.04 to 0.96 (overall r2 = 0.39) and D values of 2.6 to 48.6% (overall D = 19.8). Method 2 model evaluation results indicated EF values of −1.69, −3.85 and −0.01, for depths of 15, 25 and 35 cm, respectively. The D values were 27, 20 and 13%, respectively. Graphical displays indicated that during the evaluation process, the model generally tended to slightly under-estimate the wetter moisture conditions, regardless of whether data for a wet year or a dry year were used during the calibration process. Key words: Modeling, calibration method, soil water, land reclamation


2018 ◽  
Author(s):  
Siyuan Tian ◽  
Luigi J. Renzullo ◽  
Albert I. J. M. van Dijk ◽  
Paul Tregoning ◽  
Jeffrey P. Walker

Abstract. The lack of direct measurement of root-zone soil moisture poses a challenge to the large-scale prediction of ecosystem response to variation in soil water. Microwave remote sensing capability is limited to measuring moisture content in the uppermost few centimetres of soil. In contrast, GRACE (Gravity Recovery and Climate Experiment) mission detected the variability in storage within the total water column, which is often dominated by groundwater variation. However, not all vegetation communities can access groundwater. In this study, satellite-derived water content from GRACE and SMOS were jointly assimilated into an ecohydrological model to better predict the impact of changes in root-zone soil moisture on vegetation vigour. Overall, the accuracy of root-zone soil moisture prediction though the joint assimilation of surface soil moisture and total water storage retrievals showed improved consistency with ground-based soil moisture measurements and satellite-observed greenness when compared to open-loop estimates (i.e. without assimilation). For example, the correlation between modelled and in-situ measurements of root-zone moisture increased by 0.1 on average over grasslands and croplands. Improved correlations were found between vegetation greenness and soil water storage derived from the joint assimilation with an increase up to 0.47 over grassland compared to open-loop estimates. Joint assimilation results show a more severe deficit in soil water in eastern Australia, western North America and eastern Brazil over the period of 2010 to 2015 than the open-loop, consistent with the satellite-observed vegetation greenness. The assimilation of satellite-observed water content contributes to more accurate knowledge of soil water availability, providing new insights for monitoring hidden water stress and vegetation response.


Agriculture ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 888
Author(s):  
Katori Miyasaka ◽  
Takafumi Miyasaka ◽  
Jumpei Ota ◽  
Siilegmaa Batsukh ◽  
Undarmaa Jamsran

In recent years, Mongolia has witnessed an increase in not only wheat fields, which have been present for a long time, but also rapeseed fields. This has led to increasing concerns about soil degradation due to inappropriate cultivation. This study aims to determine the impacts of rapeseed production on soil water storage in Mongolia. The soil water content and matric potential were measured in wheat and rapeseed fields and adjacent steppe rangeland for five years, including crop production and fallow years, and the soil water storages in the fields were compared. The results demonstrated that the matric potential below the root zone in the rapeseed field and both rangelands was drier than the wilting point, whereas the potential in the wheat field was usually almost the same or wetter than this point. The comparison of the amount of soil water storage during the fallow year with that of the adjacent rangeland showed it to be 5–10% higher for the wheat field and almost equal for the rapeseed field. Field management must consider the fact that rapeseed fields use more water than is required by wheat fields and that less water is stored during fallow periods.


2010 ◽  
Vol 40 (3) ◽  
pp. 488-499 ◽  
Author(s):  
Michael S. Watt ◽  
David J. Palmer ◽  
Mark O. Kimberley ◽  
Barbara K. Höck ◽  
Tim W. Payn ◽  
...  

Development of spatial surfaces describing variation in productivity across broad landscapes at a fine resolution would be of considerable use to forest managers as decision support tools to optimize productivity. In New Zealand, the two most widely used indices to quantify productivity of Pinus radiata D. Don are Site Index and 300 Index. Using an extensive national data set comprising a comprehensive set of national extent maps, multiple regression models and spatial surfaces of these indices for P. radiata were constructed. The final models accounted for 64% and 53%, respectively, of the variance in Site Index and 300 Index. For Site Index, variables included in the final model in order of importance were mean annual air temperature, fractional mean annual available root-zone water storage, mean annual windspeed, length and slope factor, categories describing Land Environments of New Zealand (LENZ), and major soil parent material. The variables included in the final model of 300 Index in order of importance included the degree of ground frost during autumn, fractional mean annual available root-zone water storage, categories describing LENZ, vegetation classification, foliar nitrogen, taxonomic soil order, and major soil parent material. These results highlight the utility of thematic spatial layers as driving variables in the development of productivity models.


1981 ◽  
Vol 61 (2) ◽  
pp. 425-435 ◽  
Author(s):  
C. S. TAN ◽  
J. M. FULTON

Several years of daily evapotranspiration (ET) data for irrigated early potatoes, corn and processing tomatoes, grown on Fox sandy loam measured by floating lysimeters and estimated by meteorological data were used to evaluate an equilibrium evapotranspiration (ETeq) model. A reasonable relationship was obtained between values estimated by the model and those measured by floating lysimeters. The ETeq model can be used to estimate daily ET over a wide range of soil moisture and foliage cover conditions. ETeq can be estimated from readily available climatic data in the form: ETeq = (0.48 + 0.01 Ta) [(0.114 + 0.365n/N) K↓a − 0.039]; where Ta is the mean daily air temperature (°C); n is sunshine duration (h); N is maximum hours of bright sunshine (h); K↓a is solar energy received at the top of the atmosphere (mm/day). At high soil water storage in the root zone, the ET/ETeq remained constant, whereas, at low soil water storage, the ET/ETeq decreased linearly with decreasing soil water storage. The total crop yields were directly related to growing season accumulated ET.


Sign in / Sign up

Export Citation Format

Share Document