scholarly journals Effects of Wheat and Rapeseed Production on Soil Water Storage in Mongolian Rangeland

Agriculture ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 888
Author(s):  
Katori Miyasaka ◽  
Takafumi Miyasaka ◽  
Jumpei Ota ◽  
Siilegmaa Batsukh ◽  
Undarmaa Jamsran

In recent years, Mongolia has witnessed an increase in not only wheat fields, which have been present for a long time, but also rapeseed fields. This has led to increasing concerns about soil degradation due to inappropriate cultivation. This study aims to determine the impacts of rapeseed production on soil water storage in Mongolia. The soil water content and matric potential were measured in wheat and rapeseed fields and adjacent steppe rangeland for five years, including crop production and fallow years, and the soil water storages in the fields were compared. The results demonstrated that the matric potential below the root zone in the rapeseed field and both rangelands was drier than the wilting point, whereas the potential in the wheat field was usually almost the same or wetter than this point. The comparison of the amount of soil water storage during the fallow year with that of the adjacent rangeland showed it to be 5–10% higher for the wheat field and almost equal for the rapeseed field. Field management must consider the fact that rapeseed fields use more water than is required by wheat fields and that less water is stored during fallow periods.

2021 ◽  
Author(s):  
XinRui Luo ◽  
Shaoda Li ◽  
Wunian Yang ◽  
Liang Liu ◽  
Xiaolu Tang

<p>Soil water storage serves as a vital resource of the terrestrial ecosystems, and it can significantly influence water cycle and carbon cycling with the frequent occurrence of soil drought induced by land-atmosphere feedbacks. However, there are high variations and uncertainties of root zone soil water storage. This study applied comparison map profile (CMP), Mann-Kendall test, Theil-Sen estimate and partial correlation analysis to (1) estimate the global root zone (0~1 m) soil water storage, (2) and investigate the spatial and temporal patterns from 1981 to 2017 at the global scale, (3) and their relationships with environmental drivers (precipitation, temperature, potential evaportranspiration) using three soil moisture (SM) products – ERA-5, GLDAS and MERRA-2. Globally, the average annual soil water storage from 1981 to 2017 varied significantly, ranging from 138.3 (100 Pg a<sup>-1</sup>, 1 Pg = 10<sup>15</sup> g) in GLDAS to 342.6 (100 Pg a<sup>-1</sup>) in ERA-5. Soil water storage of the three SM products consistently showed a decreasing trend. However, the temporal trend of soil water storage among different climate zones was different, showing a decreasing trend in tropical, temperate and cold zones, but an increasing trend in polar regions. On the other hand, temporal trends in arid regions differed from ERA-5, GLDAS and MERRA-2. Spatially, the SM products differed greatly, particularly for boreal areas with D value higher for 2500 Mg ha<sup>-1</sup> a<sup>-1</sup> and CC value lower for -0.2 between GLDAS and MERRA-2. Over 1981 to 2017, water storage of more than 50% of the global land area suffered from a decreasing trend, especially in Africa and Northeastern of China. Precipitation was the main dominated driver for variation of soil water storage, and distribution varied in different SM products. In conclusion, a global decreasing trend in soil water storage indicate a water loss from soils, and how the water loss affecting carbon sink in terrestrial ecosystems under ongoing climate change needs further investigation.</p>


Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1312 ◽  
Author(s):  
Majed Abu-Zreig ◽  
Haruyuki Fujimaki ◽  
Mohamed Ahmed Abd Elbasit

Enhancing rainwater infiltration into heavy soils is an important strategy in arid regions to increase soil water storage and meet crop water demand. In such soils, water infiltration and deep percolation can be enhanced by constructing deep ditches filled with permeable materials, such as sand. Laboratory experiments were conducted to examine the effect of sand ditch installed across the slope of a soil box, 50 × 20 × 20 cm3, on runoff interception and water infiltration of clay soil packed at two bulk densities, 1240 and 1510 kg/m3. The experiments were carried out under laboratory conditions using simulated steady flow of about 20 cm/h for a duration of 60 min. Results showed that sand ditches highly reduced runoff and largely enhanced water infiltration into soils. In low-density soil, the average runoff was 15% of inflow volume but reduced to zero in the presence of sand ditches thus increasing soil water storage by 15%. In high-density soil, the presence of sand ditches was more effective; infiltration volume increased by 156% compared to control. The WASH_2D model was used to simulate water flow in the presence of sand ditches; it showed to increase water infiltration and soil-moisture storage thus improving crop production in drylands.


1981 ◽  
Vol 61 (2) ◽  
pp. 425-435 ◽  
Author(s):  
C. S. TAN ◽  
J. M. FULTON

Several years of daily evapotranspiration (ET) data for irrigated early potatoes, corn and processing tomatoes, grown on Fox sandy loam measured by floating lysimeters and estimated by meteorological data were used to evaluate an equilibrium evapotranspiration (ETeq) model. A reasonable relationship was obtained between values estimated by the model and those measured by floating lysimeters. The ETeq model can be used to estimate daily ET over a wide range of soil moisture and foliage cover conditions. ETeq can be estimated from readily available climatic data in the form: ETeq = (0.48 + 0.01 Ta) [(0.114 + 0.365n/N) K↓a − 0.039]; where Ta is the mean daily air temperature (°C); n is sunshine duration (h); N is maximum hours of bright sunshine (h); K↓a is solar energy received at the top of the atmosphere (mm/day). At high soil water storage in the root zone, the ET/ETeq remained constant, whereas, at low soil water storage, the ET/ETeq decreased linearly with decreasing soil water storage. The total crop yields were directly related to growing season accumulated ET.


1998 ◽  
Vol 49 (1-2) ◽  
pp. 19-27 ◽  
Author(s):  
Drew J. Lyon ◽  
Walter W. Stroup ◽  
Randall E. Brown

1979 ◽  
Vol 19 (97) ◽  
pp. 233 ◽  
Author(s):  
WK Anderson

The potential, or energy-limited evapotranspiration, and the actual, or soil water-limited evapotranspiration functions of sunflower were estimated by lysimetry and field soil water measurements. The functions show that peak water demand by the crop is in the immediate post-anthesis period and that sunflower is capable of restricting its water use when some 70% of the maximum available water remains in the root zone. With the aid of these functions, weekly estimates were made of the water use of thirteen commercial sunflower crops in northern New South Wales. Estimated water use ranged from 150 to 320 mrn and water use efficiencies from 1.9 to 10.5 kg seed mm-1 water used. Highest yields and water use efficiencies were associated with a combination of high total water supply (soil water at sowing plus rainfall during growth of 380 mm or more) high water use (220 mm or more) and low evaporative demand (below 780 mm of pan evaporation). Based on the water use characteristics of the crop the optimal sowing time in most areas is mid summer. However, spring sowings may be preferable for winter rainfall areas where soil water storage capacity is high and there is only a small component of summer rain. Crops sown in spring, even with high stored soil water (up to 200 mm) failed to yield as well as those sown in summer with much lower soil water storage.


2007 ◽  
Vol 64 (3) ◽  
pp. 215-220 ◽  
Author(s):  
Isabeli Pereira Bruno ◽  
Adriana Lúcia da Silva ◽  
Klaus Reichardt ◽  
Durval Dourado-Neto ◽  
Osny Oliveira Santos Bacchi ◽  
...  

The use of climatological water balances in substitution to complete water balances directly measured in the field allows a more practical crop management, since the climatological water balances are based on data monitored as a routine. This study makes a comparison between these methods in terms of estimatives of evapotranspiration, soil water storage, soil available water, runoff losses, and drainage below root zone, during a two year period, taking as an example a coffee crop of the variety Catuaí, three to five years old. Climatological water balances based on the estimation of the evapotranspiration through the methods of Thornthwaite and Penman-Monteith, can reasonably substitute field measured balances, however underestimating the above mentioned variables.


2013 ◽  
Vol 126 ◽  
pp. 26-33 ◽  
Author(s):  
Imene Jemai ◽  
Nadhira Ben Aissa ◽  
Saida Ben Guirat ◽  
Moncef Ben-Hammouda ◽  
Tahar Gallali

Soil Research ◽  
2011 ◽  
Vol 49 (1) ◽  
pp. 77 ◽  
Author(s):  
L. C. Timm ◽  
D. Dourado-Neto ◽  
O. O. S. Bacchi ◽  
W. Hu ◽  
R. P. Bortolotto ◽  
...  

Sampling field soils to estimate soil water content and soil water storage (S) is difficult due to the spatial variability of these variables, which demands a large number of sampling points. Also, the methodology employed in most cases is invasive and destructive, so that sampling in the same positions at different times is impossible. However, neutron moderation, time domain reflectrometry, and, more recently, frequency domain reflectrometry methodologies allow measurements at the same points over long time intervals. This study evaluates a set of neutron probe data, collected at 15 positions placed randomly along a coffee crop contour line, over 2 years at 14-day intervals. The temporal stability of S was again demonstrated, so that wetter or dryer locations remain so over time, and the definition of such positions in the field reduces the number of sampling points in future S evaluations under similar conditions. An analysis was made to determine the minimum number of sampling points to obtain the average S of the field within a chosen level of significance. Classical statistical analysis indicated that the 15 measurement positions could be reduced to four or even to one position to obtain a reliable field S average. State–time analysis showed S estimations depend more on previous measurements of rainfall P (52%) than on evapotranspiration ET (28%) and S (20%). The analysis also showed that ET was not realistically estimated from previous measurements of S; it was more dependent on previous measurements of ET (59%) than on P (30%) and S (9%). This statistical procedure showed great advantages over classical multiple regressions. Future studies of this type should be carried out at regularly spaced observation points in a grid, in order to allow a 2-D and 3-D state–space–time analysis.


2012 ◽  
Vol 92 (3) ◽  
pp. 439-448 ◽  
Author(s):  
Wenxiu Zou ◽  
Bingcheng Si ◽  
Xiaozeng Han ◽  
Heng Jiang

Zou, W., Si, B., Han, X. and Jiang, H. 2012. The effect of long-term fertilization on soil water storage and water deficit in the Black Soil Zone in northeast China. Can. J. Soil Sci. 92: 439–448. The Black Soil Zone in northeast China is one of the most important areas of agricultural production in China and plays a crucial role in food supply. However, further improvement in crop yield hinges on effective management of soil water. There is a poor understanding of how different fertilization methods affect crop water use efficiency. The objective of this study was to examine the effect of different fertilization methods on soil water storage and deficit in Black soils. A long-term experiment was conducted at the National Field Research Station of Agro-ecosystems, at Hailun County, Heilongjiang province in northeastern China from 1999 to 2008. Three fertilizer treatments including no fertilizer (CK), inorganic fertilizer (NP) and inorganic fertilizer plus organic material (NPM) were tested. The results showed that soil water storage decreased in the order CK, NP, and NPM during the growing season and the differences in soil water storage in the active root zone (0–70 cm) and below the active root zone (70–130 cm) and soil water deficit were statistically significant among the three treatments. Due to the uneven temporal distribution of rainfall and crop water uptake, soil water content was very dynamic in all three treatments: The low soil water storage and resulting soil water deficit (defined as the monthly difference between potential evapotranspiration and soil available water storage) within the 0- to 70-cm soil profile were found in both June and July. Further, soil receiving NPM was more likely to have a soil water deficit, but less likely to have excessive water. A lower risk of excess water may result in deeper root penetration and increased water use at greater depth, and thus the water deficit under the NPM treatment may not be the limiting factor for crop production. Therefore, NPM seems a viable management practice for improving crop yields in the Black Soil Zone in northeast China, possibly due to higher soil organic carbon and nutrient supply and lower probability of excess water.


Sign in / Sign up

Export Citation Format

Share Document