scholarly journals Tropospheric mixing and parametrization of unresolved convection as implemented into the Chemical Lagrangian Model of the Stratosphere (CLaMS)

Author(s):  
Paul Konopka ◽  
Mengchu Tao ◽  
Felix Ploeger ◽  
Mohamadou Diallo ◽  
Martin Riese

Abstract. Inaccurate representation of mixing in chemistry transport model, mainly suffering from an excessive numerical diffusion, strongly influences the quantitative estimates of the stratosphere-troposphere exchange (STE). The Lagrangian view of transport offers an alternative to exploit the numerical diffusion for parametrization of the physical mixing. Here, we follow this concept and discuss how to extend the representation of tropospheric transport in the Chemical Lagrangian Model of the Stratosphere (CLaMS). Although the current transport scheme in CLaMS shows good ability of representing transport of tracers in the stably stratified stratosphere (Pommrich et al., (2014) and the references therein), there are deficiencies in representation of the effects of convective uplift and mixing due to weak vertical stability in the troposphere. We show how the CLaMS transport scheme was modified by including additional tropospheric mixing and vertical transport due to unresolved convection by parametrizing these processes in terms of the dry and moist Brunt-Vaisala frequency, respectively. The regions with enhanced vertical transport in the novel CLaMS simulation covering the 2005-08 period coincide with regions of enhanced convection as diagnosed from the satellite observations of the Outgoing Longwave Radiation (OLR). We analyze how well this approach improves the CLaMS representation of CO2 in the upper troposphere and lower stratosphere, in particular the propagation of the CO2 seasonal cycle from the Planetary Boundary Layer (PBL) into the lower stratosphere. The CO2 values in the PBL are specified by the CarbonTracker data set (version CT2013B) and the Comprehensive Observation Network for TRace gases by AIrLiner (CONTRAIL) observations are used to validate the model. The proposed extension of tropospheric transport increases the tropospheric influence in the middle and upper troposphere and at the same time influences the STE. The effect on mean age away from the troposphere in the deep stratosphere is weak.

2019 ◽  
Vol 12 (6) ◽  
pp. 2441-2462 ◽  
Author(s):  
Paul Konopka ◽  
Mengchu Tao ◽  
Felix Ploeger ◽  
Mohamadou Diallo ◽  
Martin Riese

Abstract. Inaccurate representation of mixing in chemistry transport models, mainly suffering from an excessive numerical diffusion, strongly influences the quantitative estimates of the stratosphere–troposphere exchange (STE). The Lagrangian view of transport offers an alternative to exploit the numerical diffusion for parametrization of the physical mixing. Here, we follow this concept and discuss how to extend the representation of tropospheric transport in the Chemical Lagrangian Model of the Stratosphere (CLaMS). Although the current transport scheme in CLaMS (v1.0) shows a good ability to represent transport of tracers in the stably stratified stratosphere (Pommrich et al., 2014, and the references therein), there are deficiencies in the representation of the effects of convective uplift and mixing due to weak vertical stability in the troposphere. We show how the CLaMS transport scheme was modified by including additional tropospheric mixing and vertical transport due to unresolved convective updrafts by parametrizing these processes in terms of the dry and moist Brunt–Väisälä frequencies. The regions with enhanced convective updrafts in the novel CLaMS simulation covering the 2005–2008 period coincide with regions of enhanced convection as diagnosed from the satellite observations of the outgoing longwave radiation (OLR). We analyze how well this approach improves the CLaMS representation of CO2 in the upper troposphere and lower stratosphere, in particular the propagation of the CO2 seasonal cycle from the planetary boundary layer (PBL) into the lower stratosphere. The CO2 values in the PBL are specified by the CarbonTracker data set (version CT2013B), and the Comprehensive Observation Network for TRace gases by AIrLiner (CONTRAIL) observations are used to validate the model. The proposed extension of tropospheric transport increases the influence of the PBL in the middle and upper troposphere and at the same time impacts the STE. The effect on mean age away from the troposphere in the deep stratosphere is weak.


2016 ◽  
Vol 9 (9) ◽  
pp. 4355-4373 ◽  
Author(s):  
Swagata Payra ◽  
Philippe Ricaud ◽  
Rachid Abida ◽  
Laaziz El Amraoui ◽  
Jean-Luc Attié ◽  
...  

Abstract. The present analysis deals with one of the most debated aspects of the studies on the upper troposphere/lower stratosphere (UTLS), namely the budget of water vapour (H2O) at the tropical tropopause. Within the French project “Multiscale water budget in the upper troposphere and lower stratosphere in the TROpics” (TRO-pico), a global-scale analysis has been set up based on space-borne observations, models and assimilation techniques. The MOCAGE-VALENTINA assimilation tool has been used to assimilate the Aura Microwave Limb Sounder (MLS) version 3.3 H2O measurements within the 316–5 hPa range from August 2011 to March 2013 with an assimilation window of 1 h. Diagnostics based on observations minus analysis and forecast are developed to assess the quality of the assimilated H2O fields. Comparison with an independent source of H2O measurements in the UTLS based on the space-borne Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) observations and with meteorological ARPEGE analyses is also shown. Sensitivity studies of the analysed fields have been performed by (1) considering periods when no MLS measurements are available and (2) using H2O data from another MLS version (4.2). The studies have been performed within three different spaces in time and space coincidences with MLS (hereafter referred to as MLS space) and MIPAS (MIPAS space) observations and with the model (model space) outputs and at three different levels: 121 hPa (upper troposphere), 100 hPa (tropopause) and 68 hPa (lower stratosphere) in January and February 2012. In the MLS space, the analyses behave consistently with the MLS observations from the upper troposphere to the lower stratosphere. In the model space, the analyses are wetter than the reference atmosphere as represented by ARPEGE and MLS in the upper troposphere (121 hPa) and around the tropopause (100 hPa), but are consistent with MLS and MIPAS in the lower stratosphere (68 hPa). In the MIPAS space, the sensitivity and the vertical resolution of the MIPAS data set at 121 and 100 hPa prevent assessment of the behaviour of the analyses at 121 and 100 hPa, particularly over intense convective areas as the South American, the African and the Maritime continents but, in the lower stratosphere (68 hPa), the analyses are very consistent with MIPAS. Sensitivity studies show the improvement on the H2O analyses in the tropical UTLS when assimilating space-borne measurements of better quality, particularly over the convective areas.


2016 ◽  
Author(s):  
S. Payra ◽  
P. Ricaud ◽  
R. Abida ◽  
L. El Amraoui ◽  
J.-L. Attié ◽  
...  

Abstract. The present analysis deals with one of the most debated aspect of the studies on the Upper Troposphere/Lower Stratosphere (UTLS), namely the budget of the water vapour (H2O) at the tropical tropopause. Within the French project "Multiscale water budget in the upper troposphere and lower stratosphere in the TROpics" (TRO-pico), a global-scale analysis has been set up based on space-borne observations, model and assimilation techniques. The MOCAGE-VALENTINA assimilation tool has been used to assimilate the Aura Microwave Limb Sounder (MLS) version 3.3 H2O measurements within the 316–5 hPa hPa range from August 2011 to March 2013 with an assimilation window of 1 hour. Diagnostics are developed to assess the quality of the assimilated H2O fields depending on several parameters: model error, observation minus analysis and forecast. Comparison with an independent source of H2O measurements in the UTLS based on the spaceborne Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) observations and with meteorological ARPEGE analyses are also shown. Sensitivity studies of the analyzed fields have been performed by: 1) considering periods when no MLS measurements are available and 2) using another MLS version 4.2 H2O data. The studies have been performed within 3 different spaces in time and space coincidences with MLS and MIPAS observations and with the model outputs and at 3 different levels: 121 hPa (upper troposphere), 100 hPa (tropopause), and 68 hPa (lower stratosphere) in January and February 2012. In the MLS space, the analyses behave consistently with the MLS observations from the upper troposphere to the lower stratosphere. In the model space, the analyses are wetter than the “true” atmosphere as represented by ARPEGE and MLS in the upper troposphere (121 hPa) and around the tropopause (100 hPa), but consistent with MLS and MIPAS in the lower stratosphere (68 hPa). In the MIPAS space, the sensitivity and the vertical resolution of the MIPAS data set at 121 and 100 hPa prevent to assess the behaviour of the analyses at 121 and 100 hPa particularly over intense convective areas as the Southern American, the African and the Maritime continents but, in the lower stratosphere (68 hPa), the analyses are very consistent with MIPAS. Sensitivity studies show the great improvement on the H2O analyses in the tropical UTLS when assimilating spaceborne measurements of better quality particularly over the convective areas.


2017 ◽  
Author(s):  
Yann Cohen ◽  
Hervé Petetin ◽  
Valérie Thouret ◽  
Virginie Marécal ◽  
Béatrice Josse ◽  
...  

Abstract. In situ measurements in the upper troposphere – lower stratosphere (UTLS) are performed in the framework of the European research infrastructure IAGOS (In-service Aircraft for a Global Observing System) for ozone since 1994 and for carbon monoxide since 2002. The flight tracks cover a wide range of longitudes in the northern extratropics, extending from the North American western coast (125° W) to the eastern Asian coast (135° E), and more recently over the northern Pacific ocean. Different tropical regions are also sampled frequently, such as the Brazilian coast, central and southern Africa, southeastern Asia and the western Maritime Continent. As a result, a new set of climatologies for O3 (Aug. 1994–Dec. 2013) and CO (Dec. 2001–Dec. 2013) in the upper troposphere (UT), tropopause layer and lower stratosphere (LS) are made available, including quasi-global gridded horizontal distributions, and seasonal cycles over eight well sampled regions of interest in the northern extratropics. The seasonal cycles generally show a summertime maximum in O3 and a springtime maximum in CO in the UT, in contrast with the systematic springtime maximum in O3 and the quasi-absence of seasonal cycle of CO in the LS. This study highlights some regional variabilities in the UT notably (i) a west-east difference of O3 in boreal summer with up to 15 ppb more O3 over central Russia compared with northeast America, (ii) a systematic west-east gradient of CO from 60° E to 140° E (especially noticeable in spring and summer with about 5 ppb by 10 degrees longitude), (iii) a broad spring/summer maximum of CO over North East Asia, and (iv) a spring maximum of O3 over Western North America. Thanks to almost 20 years of O3 and 12 years of CO measurements, the IAGOS database is a unique data set to derive trends in the UTLS. Trends in O3 in the UT are positive and statistically significant in most regions, ranging from +0.25 to +0.45 ppb yr−1, characterized by the significant increase of the lowest values of the distribution. No significant trends of O3 are detected in the LS. Trends of CO in the UT, tropopause and LS are all negative and statistically significant. The estimated slopes range from −1.37 to −0.59 ppb yr−1 , with a nearly homogeneous decrease of the lowest values of the monthly distribution (fifth percentile) contrasting with the high inter-regional variability of the highest values (95th percentile).


2009 ◽  
Vol 9 (5) ◽  
pp. 18511-18543 ◽  
Author(s):  
J. Aschmann ◽  
B. M. Sinnhuber ◽  
E. L. Atlas ◽  
S. M. Schauffler

Abstract. The transport of very short-lived substances into the tropical upper troposphere and lower stratosphere is investigated by a three-dimensional chemical transport model using archived convective updraft mass fluxes (or detrainment rates) from the European Centre for Medium-Range Weather Forecast's ERA-Interim reanalysis. Large-scale vertical velocities are calculated from diabatic heating rates. With this approach we explicitly model the large scale subsidence in the tropical troposphere with convection taking place in fast and isolated updraft events. The model calculations agree generally well with observations of bromoform and methyl iodide from aircraft campaigns and with ozone and water vapor from sonde and satellite observations. Using a simplified treatment of dehydration and bromine product gas washout we give a range of 1.6 to 3 ppt for the contribution of bromoform to stratospheric bromine, assuming a uniform source in the boundary layer of 1 ppt. We show that the most effective region for VSLS transport into the stratosphere is the West Pacific, accounting for about 55% of the bromine from bromoform transported into the stratosphere under the supposition of a uniformly distributed source.


2014 ◽  
Vol 7 (4) ◽  
pp. 5087-5139 ◽  
Author(s):  
R. Pommrich ◽  
R. Müller ◽  
J.-U. Grooß ◽  
P. Konopka ◽  
F. Ploeger ◽  
...  

Abstract. Variations in the mixing ratio of trace gases of tropospheric origin entering the stratosphere in the tropics are of interest for assessing both troposphere to stratosphere transport fluxes in the tropics and the impact of these transport fluxes on the composition of the tropical lower stratosphere. Anomaly patterns of carbon monoxide (CO) and long-lived tracers in the lower tropical stratosphere allow conclusions about the rate and the variability of tropical upwelling to be drawn. Here, we present a simplified chemistry scheme for the Chemical Lagrangian Model of the Stratosphere (CLaMS) for the simulation, at comparatively low numerical cost, of CO, ozone, and long-lived trace substances (CH4, N2O, CCl3F (CFC-11), CCl2F2 (CFC-12), and CO2) in the lower tropical stratosphere. For the long-lived trace substances, the boundary conditions at the surface are prescribed based on ground-based measurements in the lowest model level. The boundary condition for CO in the free troposphere is deduced from MOPITT measurements (at ≈ 700–200 hPa). Due to the lack of a specific representation of mixing and convective uplift in the troposphere in this model version, enhanced CO values, in particular those resulting from convective outflow are underestimated. However, in the tropical tropopause layer and the lower tropical stratosphere, there is relatively good agreement of simulated CO with in-situ measurements (with the exception of the TROCCINOX campaign, where CO in the simulation is biased low ≈ 10–20 ppbv). Further, the model results are of sufficient quality to describe large scale anomaly patterns of CO in the lower stratosphere. In particular, the zonally averaged tropical CO anomaly patterns (the so called "tape recorder" patterns) simulated by this model version of CLaMS are in good agreement with observations. The simulations show a too rapid upwelling compared to observations as a consequence of the overestimated vertical velocities in the ERA-interim reanalysis data set. Moreover, the simulated tropical anomaly patterns of N2O are in good agreement with observations. In the simulations, anomaly patterns for CH4 and CFC-11 were found to be consistent with those of N2O; for all long-lived tracers, positive anomalies are simulated because of the enhanced tropical upwelling in the easterly phase of the quasi-biennial oscillation.


2020 ◽  
Vol 20 (2) ◽  
pp. 1163-1181
Author(s):  
Michal T. Filus ◽  
Elliot L. Atlas ◽  
Maria A. Navarro ◽  
Elena Meneguz ◽  
David Thomson ◽  
...  

Abstract. The effectiveness of transport of short-lived halocarbons to the upper troposphere and lower stratosphere remains an important uncertainty in quantifying the supply of ozone-depleting substances to the stratosphere. In early 2014, a major field campaign in Guam in the western Pacific, involving UK and US research aircraft, sampled the tropical troposphere and lower stratosphere. The resulting measurements of CH3I, CHBr3 and CH2Br2 are compared here with calculations from a Lagrangian model. This methodology benefits from an updated convection scheme that improves simulation of the effect of deep convective motions on particle distribution within the tropical troposphere. We find that the observed CH3I, CHBr3 and CH2Br2 mixing ratios in the tropical tropopause layer (TTL) are consistent with those in the boundary layer when the new convection scheme is used to account for convective transport. More specifically, comparisons between modelled estimates and observations of short-lived CH3I indicate that the updated convection scheme is realistic up to the lower TTL but is less good at reproducing the small number of extreme convective events in the upper TTL. This study consolidates our understanding of the transport of short-lived halocarbons to the upper troposphere and lower stratosphere by using improved model calculations to confirm consistency between observations in the boundary layer, observations in the TTL and atmospheric transport processes. Our results support recent estimates of the contribution of short-lived bromocarbons to the stratospheric bromine budget.


2007 ◽  
Vol 7 (21) ◽  
pp. 5639-5657 ◽  
Author(s):  
P. Ricaud ◽  
B. Barret ◽  
J.-L. Attié ◽  
E. Motte ◽  
E. Le Flochmoën ◽  
...  

Abstract. The mechanism of troposphere-stratosphere exchange in the tropics was investigated from space-borne observations of the horizontal distributions of tropospheric-origin long-lived species, nitrous oxide (N2O), methane (CH4) and carbon monoxide (CO), from 150 to 70 hPa in March-April-May by the ODIN/Sub-Millimeter Radiometer (SMR), the Upper Atmosphere Research Satellite (UARS)/Halogen Occultation Experiment (HALOE) and the TERRA/Measurements Of Pollution In The Troposphere (MOPITT) instruments in 2002–2004, completed by recent observations of the AURA/Microwave Limb Sounder (MLS) instrument during the same season in 2005. The vertical resolution of the satellite measurements ranges from 2 to 4 km. The analysis has been performed on isentropic surfaces: 400 K (lower stratosphere) for all the species and 360 K (upper troposphere) only for CO. At 400 K (and 360 K for CO), all gases show significant longitudinal variations with peak-to-trough values of ~5–11 ppbv for N2O, 0.07–0.13 ppmv for CH4, and ~10 ppbv for CO (~40 ppbv at 360 K). The maximum amounts are primarily located over Africa and, depending on the species, secondary more or less pronounced maxima are reported above northern South America and South-East Asia. The lower stratosphere over the Western Pacific deep convective region where the outgoing longwave radiation is the lowest, the tropopause the highest and the coldest, appears as a region of minimum concentration of tropospheric trace species. The possible impact on trace gas concentration at the tropopause of the inhomogeneous distribution and intensity of the sources, mostly continental, of the horizontal and vertical transports in the troposphere, and of cross-tropopause transport was explored with the MOCAGE Chemistry Transport Model. In the simulations, significant longitudinal variations were found on the medium-lived CO (2-month lifetime) with peak-to-trough value of ~20 ppbv at 360 K and ~10 ppbv at 400 K, slightly weaker than observations. However, the CH4 (8–10 year lifetime) and N2O (130-year lifetime) longitudinal variations are significantly weaker than observed: peak-to-trough values of ~0.02 ppmv for CH4 and 1–2 ppbv for N2O at 400 K. The large longitudinal contrast of N2O and CH4 concentrations reported by the space-borne instruments at the tropopause and in the lower stratosphere not captured by the model thus requires another explanation. The suggestion is of strong overshooting over land convective regions, particularly Africa, very consistent with the space-borne Tropical Rainfall Measuring Mission (TRMM) radar maximum overshooting features over the same region during the same season. Compared to observations, the MOCAGE model forced by ECMWF analyses is found to ignore these fast local uplifts, but to overestimate the average uniform vertical transport in the UTLS at all longitudes in the tropics.


2012 ◽  
Vol 12 (22) ◽  
pp. 11085-11093 ◽  
Author(s):  
Z. Li ◽  
S. Naqvi ◽  
A. J. Gerrard ◽  
J. L. Chau ◽  
Y. Bhattacharya

Abstract. Persistent wind jet structures along zonal and meridional fields, believed to be caused by stationary gravity waves, were detected in February 1999 in mesosphere-stratosphere-troposphere (MST) radar wind measurements of the troposphere and lower stratosphere over Jicamarca, Peru. Over a continuous seven day span of MST-data analyzed in this study, two days of observations showed signatures of wave-like structures in the upper troposphere/lower stratosphere wind jets associated with the phases of the stationary gravity waves. We believe these wave-like structures are ducted gravity waves. We present these initial observations, their characteristics, and the results of simple numerical simulations used in an attempt to mimic these observed features. Although a fair replication of the observed ducted structure in the numerical model is found, the observed period of ~90 min is nonetheless much longer than what is traditionally observed. As a result, the specific physical nature of the observed structures is not fully established. Nevertheless, given the high quality of the observations, we demonstrate here that continued analysis of this data set and concurrent modeling efforts will allow for a better understanding of Doppler ducts at high spatial and temporal resolution, and the results presented here can ultimately be applied to studies of middle atmospheric fronts, ducts, and bores.


2009 ◽  
Vol 9 (1) ◽  
pp. 1977-2020
Author(s):  
F. Khosrawi ◽  
R. Müller ◽  
M. H. Proffitt ◽  
R. Ruhnke ◽  
O. Kirner ◽  
...  

Abstract. 1-year data sets of monthly averaged nitrous oxide (N2O) and ozone (O3) derived from satellite measurements were used as a tool for the evaluation of atmospheric photochemical models. Two 1-year data sets, one derived from the Improved Limb Atmospheric Spectrometer (ILAS and ILAS-II) and one from the Odin Sub-Millimetre Radiometer (Odin/SMR) were employed. Here, these data sets are used for the evaluation of two Chemical Transport Models (CTMs), the Karlsruhe Simulation Model of the Middle Atmosphere (KASIMA) and the Chemical Lagrangian Model of the Stratosphere (CLaMS) as well as for one Chemistry-Climate Model (CCM), the atmospheric chemistry general circulation model ECHAM5/MESSy1 (E5M1) in the lower stratosphere with focus on the Northern Hemisphere. Since the Odin/SMR measurements cover the entire hemisphere, the evaluation is performed for the entire hemisphere as well as for the low latitudes, midlatitudes and high latitudes using the Odin/SMR 1-year data set as reference. To assess the impact of using different data sets for such an evaluation study we repeat the evaluation for the polar lower stratosphere using the ILAS/ILAS-II data set. Only small differences were found using ILAS/ILAS-II instead of Odin/SMR as a reference, thus, showing that the results are not influenced by the particular satellite data set used for the evaluation. The evaluation of CLaMS, KASIMA and E5M1 shows that all models are in good agreement with Odin/SMR and ILAS/ILAS-II. Differences are generally in the range of ±20%. Larger differences (up to −40%) are found in all models at 500±25 K for N2O mixing ratios greater than 200 ppb. Generally, the largest differences were found for the tropics and the lowest for the polar regions. However, an underestimation of polar winter ozone loss was found both in KASIMA and E5M1 both in the Northern and Southern Hemisphere.


Sign in / Sign up

Export Citation Format

Share Document