scholarly journals Towards End-2-End modelling in a consistent NPZD-F modelling framework (ECOSMOE2E_vs1.0): Application to the North Sea and Baltic Sea

Author(s):  
Ute Daewel ◽  
Corinna Schrum ◽  
Jed Macdonald

Abstract. Coupled physical-biological models usually resolve only parts of the trophic food chain and hence, run the risk of neglecting relevant ecosystem processes. Additionally, this imposes a closure term problem at the respective “ends” of the considered trophic levels. Here we propose a consistent NPZD-Fish modelling approach (ECOSMO E2E) to address the above-mentioned problem in lower trophic ecosystem modelling, and to understand how the implementation of higher trophic levels in a NPZD model affects the simulated response of the combined North Sea and Baltic Sea ecosystem. On the basis of the coupled ecosystem model ECOSMO II we implemented one functional group that represents fish and one group representing macrobenthos in the 3d model formulation. Both groups are linked to the lower trophic levels and to each other via predator-prey relationships. The model allows investigating bottom-up impacts on primary and secondary production and cumulative fish biomass dynamics, but also top-down mechanisms on the lower trophic level production. Model results for a ten-year long simulation period (1980–1989) were analysed and discussed with respect to the observed pattern. To address the relevance of the newly implemented trophic levels for the simulated model response, we compare the performance of the ECOSMO E2E to a respective truncated NPZD model (ECOSMO II), which simulated the same time period. Additionally, we performed scenario tests to analyse the new role of the zooplankton mortality closure term in the truncated NPZD and the fish mortality term in the end-to-end model, which summarizes pressure imposed on the system by fisheries and mortality imposed by apex predators. We found that the model-simulated macrobenthos and fish spatial and seasonal pattern agree well with current system understanding. Considering a dynamic fish component in the ecosystem model resulted in slightly improved model performance with respect to representation of spatial and temporal variations in nutrients, changes in modelled plankton seasonality and nutrient profiles. Model sensitivity scenarios showed that changes in the zooplankton mortality parameter are transferred up and down the trophic chain with little attenuation of the signal, while major changes in fish mortality and in fish biomass cascade down the food chain.

2019 ◽  
Vol 12 (5) ◽  
pp. 1765-1789 ◽  
Author(s):  
Ute Daewel ◽  
Corinna Schrum ◽  
Jed I. Macdonald

Abstract. Coupled physical–biological models usually resolve only parts of the trophic food chain; hence, they run the risk of neglecting relevant ecosystem processes. Additionally, this imposes a closure term problem at the respective “ends” of the trophic levels considered. In this study, we aim to understand how the implementation of higher trophic levels in a nutrient–phytoplankton–zooplankton–detritus (NPZD) model affects the simulated response of the ecosystem using a consistent NPZD–fish modelling approach (ECOSMO E2E) in the combined North Sea–Baltic Sea system. Utilising this approach, we addressed the above-mentioned closure term problem in lower trophic ecosystem modelling at a very low computational cost; thus, we provide an efficient method that requires very little data to obtain spatially and temporally dynamic zooplankton mortality. On the basis of the ECOSMO II coupled ecosystem model we implemented one functional group that represented fish and one group that represented macrobenthos in the 3-D model formulation. Both groups were linked to the lower trophic levels and to each other via predator–prey relationships, which allowed for the investigation of both bottom-up processes and top-down mechanisms in the trophic chain of the North Sea–Baltic Sea ecosystem. Model results for a 10-year-long simulation period (1980–1989) were analysed and discussed with respect to the observed patterns. To understand the impact of the newly implemented functional groups for the simulated ecosystem response, we compared the performance of the ECOSMO E2E to that of a respective truncated NPZD model (ECOSMO II) applied to the same time period. Additionally, we performed scenario tests to analyse the new role of the zooplankton mortality closure term in the truncated NPZD and the fish mortality term in the end-to-end model, which summarises the pressure imposed on the system by fisheries and mortality imposed by apex predators. We found that the model-simulated macrobenthos and fish spatial and seasonal patterns agree well with current system understanding. Considering a dynamic fish component in the ecosystem model resulted in slightly improved model performance with respect to the representation of spatial and temporal variations in nutrients, changes in modelled plankton seasonality, and nutrient profiles. Model sensitivity scenarios showed that changes in the zooplankton mortality parameter are transferred up and down the trophic chain with little attenuation of the signal, whereas major changes in fish mortality and fish biomass cascade down the food chain.


2014 ◽  
Vol 71 (1) ◽  
pp. 31-46 ◽  
Author(s):  
Steven Mackinson

When an ecosystem model of the North Sea is calibrated to data from multiple trophic levels, the model estimated the primary production required to support the food web correlates temporally with observed changes in sea temperature and nutrient levels, supporting evidence from empirical analyses. However, a different result is given from an alternative calibration using fish stock data only. The inference taken from the emergent primary production – temperature relationship and empirical data are that, on balance, there is stronger overall evidence to support the calibration constrained at multiple trophic levels. Two important implications of the findings are (i) that the relative importance of fishing and environmental effects is likely to be interpreted differently depending on the calibration approach and (ii) the contrasting model calibrations would give different responses to fishing policies. It raises questions regarding how to judge the performance (and credibility) of an ecosystem model and the critical importance of conducting empirical and modelling analyses in parallel. Adopting a combined approach to ecosystem modelling is an important step in the pursuit of operational and defensible tools to support the ecosystem approach to management.


2017 ◽  
Vol 8 (3) ◽  
pp. 801-815 ◽  
Author(s):  
Ute Daewel ◽  
Corinna Schrum

Abstract. Here we present results from a long-term model simulation of the 3-D coupled ecosystem model ECOSMO II for a North Sea and Baltic Sea set-up. The model allows both multi-decadal hindcast simulation of the marine system and specific process studies under controlled environmental conditions. Model results have been analysed with respect to long-term multi-decadal variability in both physical and biological parameters with the help of empirical orthogonal function (EOF) analysis. The analysis of a 61-year (1948–2008) hindcast reveals a quasi-decadal variation in salinity, temperature and current fields in the North Sea in addition to singular events of major changes during restricted time frames. These changes in hydrodynamic variables were found to be associated with changes in ecosystem productivity that are temporally aligned with the timing of reported regime shifts in the areas. Our results clearly indicate that for analysing ecosystem productivity, spatially explicit methods are indispensable. Especially in the North Sea, a correlation analysis between atmospheric forcing and primary production (PP) reveals significant correlations between PP and the North Atlantic Oscillation (NAO) and wind forcing for the central part of the region, while the Atlantic Multi-decadal Oscillation (AMO) and air temperature are correlated to long-term changes in PP in the southern North Sea frontal areas. Since correlations cannot serve to identify causal relationship, we performed scenario model runs perturbing the temporal variability in forcing condition to emphasize specifically the role of solar radiation, wind and eutrophication. The results revealed that, although all parameters are relevant for the magnitude of PP in the North Sea and Baltic Sea, the dominant impact on long-term variability and major shifts in ecosystem productivity was introduced by modulations of the wind fields.


2017 ◽  
Author(s):  
Ute Daewel ◽  
Corinna Schrum

Abstract. Here we present results from a long-term model simulation of the 3d coupled ecosystem model ECOSMO II for a North and Baltic Sea setup. The model allows both multi-decadal hindcast simulation of the marine system and specific process studies under controlled environmental conditions. Model results have been analysed with respect to long-term multi decadal variability in both physical and biological parameters with the help of empirical orthogonal function (EOF) analysis. The analysis of a 61-year (1948–2008) long hind cast reveals a quasi-decadal variation on salinity, temperature and current fields in the North Sea in addition to singular events of major changes during restricted time frames. These changes in hydrodynamic variables where found to be associated to changes in ecosystem productivity that are temporally aligned with the timing of reported regime shifts in the areas. Our results clearly indicate that for analysing ecosystem productivity spatially explicit methods are indispensable. Especially in the North Sea a correlation analysis between atmospheric forcing and primary production (PP) reveals significant correlations for NAO and wind forcing for the central part of the region, while AMO and air temperature are correlated to long-term changes in the southern North Sea frontal areas. Since correlations cannot serve to identify causal relationship we performed scenario model runs with perturbing the temporal variability in forcing condition emphasizing specifically the role of solar radiation, wind and eutrophication. The results revealed that, although all parameters are relevant for the magnitude of PP in the North Sea and Baltic Sea, the dominant impact on long-term variability and major shifts in ecosystem productivity was introduced by modulations of the wind fields.


1991 ◽  
Vol 24 (10) ◽  
pp. 1-8 ◽  
Author(s):  
A. Malmgren-Hansen ◽  
J. W. Baretta ◽  
P. Ruardij

A modular approach for generating an ecosystem model for the North Sea is presented. The model structure consists of modules describing physical, chemical and biological processes. The modular approach is selected to facilitate stepwise improvements in the total ecosystem model by replacing existing modules with improved modules being developed. The modules constituting the pelagic ecosystem describe the biological and chemical dynamics of particle production and dissolution simulating the flux of carbon and nutrients (N, P, Si) through the food web. This might be done as a suite of submodules based on functional groups of organisms or as modules describing the different trophic levels based on size distributions. Algal growth is dependent on cellular content of the limiting nutrient, or on net photosynthesis, whichever is the most restricting, allowing for “luxury uptake” of nutrients which may be stored for subsequent periods of shortage. The role of bacteria and other microorganisms is emphasized in recognition of the importance of the “microbial loop”. The Zooplankton module describes prey ingestion in terms of feeding behaviour and the partitioning of ingested carbon, nitrogen and phosphorus into growth and reproduction and the losses through respiration, excretion and defecation. The benthic modules concentrate on describing the small food web, since benthic biological activity in terms of carbon flow, as well as mineralization, are often dominated by micro- and meiofauna in the generally soft sediments of the North Sea. Macrobenthos are described as being a major link between the benthic small food web and higher trophic levels in the ecosystem. Higher trophic levels are described in separate modules taking into account in principle the role of fish, mammals and seabirds. Nutrient cycling is described, focusing on the identification and conceptual modelling of the chemical processes and mechanisms in order to describe the relationships between the biology of the North Sea and the nutrient chemistry. This represents a first step towards forecasting the response of the system to long-term changes due to e.g. eutrophication. The modelling of the nutrient sediment-water interaction emphasizes the role of sedimentation of particulates and the regeneration of inorganic components to the water column. This totally modular concept of the North Sea ecosystem model reflects the authors' view on the present state of the North Sea, the basic knowledge about ecosystem behaviour and a way of creating models as a tool for better understanding of the ecosystem and how man affects the North Sea environment.


2020 ◽  
Vol 637 ◽  
pp. 225-235 ◽  
Author(s):  
MA Ladds ◽  
MH Pinkerton ◽  
E Jones ◽  
LM Durante ◽  
MR Dunn

Marine food webs are structured, in part, by predator gape size. Species found in deep-sea environments may have evolved such that they can consume prey of a wide range of sizes, to maximise resource intake in a low-productivity ecosystem. Estimates of gape size are central to some types of ecosystem model that determine which prey are available to predators, but cannot always be measured directly. Deep-sea species are hypothesized to have larger gape sizes than shallower-water species relative to their body size and, because of pronounced adaptive foraging behaviour, show only a weak relationship between gape size and trophic level. Here we present new data describing selective morphological measurements and gape sizes of 134 osteichthyan and chondrichthyan species from the deep sea (200-1300 m) off New Zealand. We describe how gape size (height, width and area) varied with factors including fish size, taxonomy (class and order within a class) and trophic level estimated from stable isotopes. For deep-sea species, there was a strong relationship between gape size and fish size, better predicted by body mass than total length, which varied by taxonomic group. Results show that predictions of gape size can be made from commonly measured morphological variables. No relationship between gape size and trophic level was found, likely a reflection of using trophic level estimates from stable isotopes as opposed to the commonly used estimates from FishBase. These results support the hypothesis that deep-sea fish are generalists within their environment, including suspected scavenging, even at the highest trophic levels.


1973 ◽  
Vol 30 (2) ◽  
pp. 293-295 ◽  
Author(s):  
P. M. Williams ◽  
H. V. Weiss

Mercury in seawater, in a pelagic food chain, and in bottom sediment was determined at a single station 430 km southeast of San Diego, California. The concentration of mercury in zooplankton slightly increased with depth of collection. The mercury content in almost all of the higher trophic levels of organisms collected at greater depths was indistinguishable from the concentration of mercury in zooplankton at these depths. Mercury concentration in the seawater column was essentially constant below 100 m and significantly higher at the surface. This vertical profile of mercury content is not ascribable to biological activity.


Sign in / Sign up

Export Citation Format

Share Document