scholarly journals Optimization of the WRFV3.7 adjoint model

2018 ◽  
Author(s):  
Qiang Cheng ◽  
Juanjuan Liu ◽  
Bin Wang

Abstract. This work focused on a new strategy for productively improving the performance of adjoint models. By using several techniques including the push/pop-free method, careful Input/Output (IO) analysis and the use of the conception of adjoint locality, we reduced the adjoint cost of the Weather Research and Forecasting plus (WRFPLUS) by almost half on different numbers of processors especially with a slight decrease in total memory. Several experiments are conducted using the four-dimensional variational data assimilation (4DVar) method. The results show that the total time cost of running a 4DVar application is decreased by approximately 1/3.

2014 ◽  
Vol 31 (9) ◽  
pp. 2008-2014 ◽  
Author(s):  
Xin Zhang ◽  
Ying-Hwa Kuo ◽  
Shu-Ya Chen ◽  
Xiang-Yu Huang ◽  
Ling-Feng Hsiao

Abstract The nonlocal excess phase observation operator for assimilating the global positioning system (GPS) radio occultation (RO) sounding data has been proven by some research papers to produce significantly better analyses for numerical weather prediction (NWP) compared to the local refractivity observation operator. However, the high computational cost and the difficulties in parallelization associated with the nonlocal GPS RO operator deter its application in research and operational NWP practices. In this article, two strategies are designed and implemented in the data assimilation system for the Weather Research and Forecasting Model to demonstrate the capability of parallel assimilation of GPS RO profiles with the nonlocal excess phase observation operator. In particular, to solve the parallel load imbalance problem due to the uneven geographic distribution of the GPS RO observations, round-robin scheduling is adopted to distribute GPS RO observations among the processing cores to balance the workload. The wall clock time required to complete a five-iteration minimization on a demonstration Antarctic case with 106 GPS RO observations is reduced from more than 3.5 h with a single processing core to 2.5 min with 106 processing cores. These strategies present the possibility of application of the nonlocal GPS RO excess phase observation operator in operational data assimilation systems with a cutoff time limit.


Author(s):  
Z. Zang ◽  
X. Pan ◽  
W. You ◽  
Y. Liang

A three-dimensional variational data assimilation system is implemented within the Weather Research and Forecasting/Chemistry model, and the control variables consist of eight species of the Model for Simulation Aerosol Interactions and Chemistry scheme. In the experiments, the three-dimensional profiles of aircraft speciated observations and surface concentration observations acquired during the California Research at the Nexus of Air Quality and Climate Change field campaign are assimilated. The data assimilation experiments are performed at 02:00 local time 2 June 2010, assimilating surface observations at 02:00 and aircraft observations from 01:30 to 02:30 local time. The results show that the assimilation of both aircraft and surface observations improves the subsequent forecasts. The improved forecast skill resulting from the assimilation of the aircraft profiles persists a time longer than the assimilation of the surface observations, which suggests the necessity of vertical profile observations for extending aerosol forecasting time.


2018 ◽  
Author(s):  
Takuya Kawabata ◽  
Thomas Schwitalla ◽  
Ahoro Adachi ◽  
Hans-Stefan Bauer ◽  
Volker Wulfmeyer ◽  
...  

Abstract. We developed two observational operators for dual polarimetric radars and implemented them in two variational data assimilation systems: WRF Var, the Weather Research and Forecasting Model variational data assimilation system, and NHM-4DVAR, the nonhydrostatic variational data assimilation system for the Japan Meteorological Agency nonhydrostatic model. The operators consist of a space interpolator, two types of variable converters as well as their linearized and transposed (adjoint) operators. The space interpolator takes account of the effects of radar-beam broadening in both vertical and horizontal directions and climatological beam bending. The first variable converter emulates polarimetric parameters with model prognostic variables and includes attenuation effects, and the second one derives rainwater content from the observed polarimetric parameter (specific differential phase). We developed linearized and adjoint operators for the space interpolator and variable converters and then assessed whether the linearity of the linearized operators and the accuracy of the adjoint operators were good enough for implementation in variational systems. The results of a simple assimilation experiment showed good agreement between assimilation results and observations with respect to reflectivity and specific differential phase but not with respect to differential reflectivity.


2014 ◽  
Vol 142 (9) ◽  
pp. 3347-3364 ◽  
Author(s):  
Jonathan Poterjoy ◽  
Fuqing Zhang

This study examines the performance of ensemble and variational data assimilation systems for the Weather Research and Forecasting (WRF) Model. These methods include an ensemble Kalman filter (EnKF), an incremental four-dimensional variational data assimilation (4DVar) system, and a hybrid system that uses a two-way coupling between the two approaches (E4DVar). The three methods are applied to assimilate routinely collected data and field observations over a 10-day period that spans the life cycle of Hurricane Karl (2010), including the pregenesis disturbance that preceded its development into a tropical cyclone. In general, forecasts from the E4DVar analyses are found to produce smaller 48–72-h forecast errors than the benchmark EnKF and 4DVar methods for all variables and verification methods tested in this study. The improved representation of low- and midlevel moisture and vorticity in the E4DVar analyses leads to more accurate track and intensity predictions by this system. In particular, E4DVar analyses provide persistently more skillful genesis and rapid intensification forecasts than the EnKF and 4DVar methods during cycling. The data assimilation experiments also expose additional benefits of the hybrid system in terms of physical balance, computational cost, and the treatment of asynoptic observations near the beginning of the assimilation window. These factors make it a practical data assimilation method for mesoscale analysis and forecasting, and for tropical cyclone prediction.


2016 ◽  
Vol 30 (2) ◽  
pp. 112
Author(s):  
Novvria Sagita ◽  
Rini Hidayati ◽  
Rahmat Hidayat ◽  
Indra Gustari ◽  
Fatkhuroyan Fatkhuroyan

Weather Research and Forecasting (WRF) is a numerical weather prediction model developed by various parties due to its open source, but the WRF has the disadvantage of low accuracy in weather prediction. One reason of low accuracy  of model is inaccuracy initial condition model to the actual atmospheric conditions. Techniques to improve the initial condition model is the observation data assimilation. In this study, we used three-dimensional variational (3D-Var) to perform data assimilation of some observation data. Observational data used in data assimilation are observation data from basic stations, non-basic stations, radiosonde data, and The Binary Universal Form for the Representation of meteorological data (BUFR) data from the National Centers for Environmental Prediction (NCEP) , and aggregate observation data from all stations. The aim of this study compares the effect of data assimilation with different data observation on January 23, 2015 at 00.00 UTC for Java island region. The results showed that changes root mean square error (RMSE) of surface temperature from 2° C to 1.7° C - 2.4° C, dew point from 2.1o C to 1.9o  C - 1.4o C, relative humidity from 16.1% to 3.5% - 14.5% after the data assimilation.


Atmosphere ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 19
Author(s):  
Santos J. González-Rojí ◽  
Jon Sáenz ◽  
Javier Díaz de Argandoña ◽  
Gabriel Ibarra-Berastegi

In this paper, we have estimated the spatiotemporal distribution of moisture recycling over the Iberian Peninsula (IP). The recycling ratio was computed from two simulations over the IP using the Weather Research and Forecasting (WRF) model with a horizontal resolution of 15 km spanning the period 2010–2014. The first simulation (WRF N) was nested inside the ERA-Interim with information passed to the domain through the boundaries. The second run (WRF D) is similar to WRF N, but it also includes 3DVAR data assimilation every six hours (12:00 a.m., 6:00 a.m., 12:00 p.m. and 6:00 p.m. UTC). It was also extended until 2018. The lowest values of moisture recycling (3%) are obtained from November to February, while the highest ones (16%) are observed in spring in both simulations. Moisture recycling is confined to the southeastern corner during winter. During spring and summer, a gradient towards the northeastern corner of the IP is observed in both simulations. The differences between both simulations are associated with the dryness of the soil in the model and are higher during summer and autumn. WRF D presents a lower bias and produces more reliable results because of a better representation of the atmospheric moisture.


2015 ◽  
Vol 33 (7) ◽  
pp. 805-828 ◽  
Author(s):  
M. M. Greeshma ◽  
C. V. Srinivas ◽  
V. Yesubabu ◽  
C. V. Naidu ◽  
R. Baskaran ◽  
...  

Abstract. The tropical cyclone (TC) track and intensity predictions over Bay of Bengal (BOB) using the Advanced Research Weather Research and Forecasting (ARW) model are evaluated for a number of data assimilation experiments using various types of data. Eight cyclones that made landfall along the east coast of India during 2008–2013 were simulated. Numerical experiments included a control run (CTL) using the National Centers for Environmental Prediction (NCEP) 3-hourly 0.5 × 0.5° resolution Global Forecasting System (GFS) analysis as the initial condition, and a series of cycling mode variational assimilation experiments with Weather Research and Forecasting (WRF) data assimilation (WRFDA) system using NCEP global PrepBUFR observations (VARPREP), Atmospheric Motion Vectors (VARAMV), Advanced Microwave Sounding Unit (AMSU) A and B radiances (VARRAD) and a combination of PrepBUFR and RAD (VARPREP+RAD). The impact of different observations is investigated in detail in a case of the strongest TC, Phailin, for intensity, track and structure parameters, and finally also on a larger set of cyclones. The results show that the assimilation of AMSU radiances and Atmospheric Motion Vectors (AMV) improved the intensity and track predictions to a certain extent and the use of operationally available NCEP PrepBUFR data which contains both conventional and satellite observations produced larger impacts leading to improvements in track and intensity forecasts. The forecast improvements are found to be associated with changes in pressure, wind, temperature and humidity distributions in the initial conditions after data assimilation. The assimilation of mass (radiance) and wind (AMV) data showed different impacts. While the motion vectors mainly influenced the track predictions, the radiance data merely influenced forecast intensity. Of various experiments, the VARPREP produced the largest impact with mean errors (India Meteorological Department (IMD) observations less the model values) of 78, 129, 166, 210 km in the vector track position, 10.3, 5.8, 4.8, 9.0 hPa deeper than IMD data in central sea level pressure (CSLP) and 10.8, 3.9, −0.2, 2.3 m s−1 stronger than IMD data in maximum surface winds (MSW) for 24, 48, 72, 96 h forecasts respectively. An improvement of about 3–36 % in track, 6–63 % in CSLP, 26–103 % in MSW and 11–223 % in the radius of maximum winds in 24–96 h lead time forecasts are found with VARPREP over CTL, suggesting the advantages of assimilation of operationally available PrepBUFR data for cyclone predictions. The better predictions with PrepBUFR could be due to quality-controlled observations in addition to containing different types of data (conventional, satellite) covering an effectively larger area. The performance degradation of VARPREP+RAD with the assimilation of all available observations over the domain after 72 h could be due to poor area coverage and bias in the radiance data.


2019 ◽  
Vol 12 (9) ◽  
pp. 4829-4848 ◽  
Author(s):  
Natalia Hanna ◽  
Estera Trzcina ◽  
Gregor Möller ◽  
Witold Rohm ◽  
Robert Weber

Abstract. From Global Navigation Satellite Systems (GNSS) signals, accurate and high-frequency atmospheric parameters can be determined in all-weather conditions. GNSS tomography is a technique that takes advantage of these parameters, especially of slant troposphere observations between GNSS receivers and satellites, traces these signals through a 3-D grid of voxels, and estimates by an inversion process the refractivity of the water vapour content within each voxel. In the last years, the GNSS tomography development focused on numerical methods to stabilize the solution, which has been achieved to a great extent. Currently, we are facing new challenges and possibilities in the application of GNSS tomography in numerical weather forecasting, the main research objective of this paper. In the first instance, refractivity fields were estimated using two different GNSS tomography models (TUW, WUELS), which cover the area of central Europe during the period of 29 May–14 June 2013, when heavy-precipitation events were observed. For both models, slant wet delays (SWDs) were calculated based on estimates of zenith total delay (ZTD) and horizontal gradients, provided for 88 GNSS sites by Geodetic Observatory Pecny (GOP). In total, three sets of SWD observations were tested (set0 without compensation for hydrostatic anisotropic effects, set1 with compensation of this effect, set2 cleaned by wet delays outside the inner voxel model), in order to assess the impact of different factors on the tomographic solution. The GNSS tomography outputs have been assimilated into the nested (12 and 36 km horizontal resolution) Weather Research and Forecasting (WRF) model, using its three-dimensional variational data assimilation (WRFDA 3D-Var) system, in particular, its radio occultation observation operator (GPSREF). As only total refractivity is assimilated in GPSREF, it was calculated as the sum of the hydrostatic part derived from the ALADIN-CZ model and the wet part from the GNSS tomography. We compared the results of the GNSS tomography data assimilation to the radiosonde (RS) observations. The validation shows the improvement in the weather forecasting of relative humidity (bias, standard deviation) and temperature (standard deviation) during heavy-precipitation events. Future improvements to the assimilation method are also discussed.


Sign in / Sign up

Export Citation Format

Share Document