scholarly journals Supplementary material to "Simulation Model of Reactive Nitrogen Species in an Urban Atmosphere using a Deep Neural Network: RND v1.0"

Author(s):  
Junsu Gil ◽  
Meehye Lee ◽  
Jeonghwan Kim ◽  
Gangwoong Lee ◽  
Joonyoung Ahn
2021 ◽  
Author(s):  
Junsu Gil ◽  
Meehye Lee ◽  
Jeonghwan Kim ◽  
Gangwoong Lee ◽  
Joonyoung Ahn

Abstract. Nitrous acid (HONO), one of the reactive nitrogen oxides (NOy), plays an important role in the formation of ozone (O3) and fine aerosols (PM2.5) in the urban atmosphere. In this study, a simulation model of Reactive Nitrogen species using Deep neural network model (RND) was constructed to calculate the HONO mixing ratios through a deep learning technique using measured variables. A Python-based Deep Neural Network (DNN) was trained, validated, and tested with HONO measurement data obtained in Seoul during the warm months from 2016 to 2019. A k-fold cross validation and test results confirmed the performance of RND v1.0 with an Index Of Agreement (IOA) of 0.79 ~ 0.89 and a Mean Absolute Error (MAE) of 0.21 ~ 0.31 ppbv. The RNDV1.0 adequately represents the main characteristics of HONO and thus, RND v1.0 is proposed as a supplementary model for calculating the HONO mixing ratio in a high- NOx environment.


2021 ◽  
Author(s):  
Cecilia Mariel Gallego ◽  
Agostina Mazzeo ◽  
Paola Vargas ◽  
Sebastián Suárez ◽  
Juan Pellegrino ◽  
...  

HNO (nitroxyl, azanone), joined the ‘biologically relevant reactive nitrogen species’ family in the 2000s. Azanone is impossible to store due to its high reactivity and inherent low stability. Consequently, its...


Nanoscale ◽  
2021 ◽  
Author(s):  
Rachael Knoblauch ◽  
Chris Geddes

While the utility of reactive oxygen species in photodynamic therapies for both cancer treatments and antimicrobial applications has received much attention, the inherent potential of reactive nitrogen species (RNS) including...


2021 ◽  
Author(s):  
Cristina Parisi ◽  
Mariacristina Failla ◽  
Aurore Fraix ◽  
Luca Menilli ◽  
Francesca Moret ◽  
...  

The generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) as “unconventional” therapeutics with precise spatiotemporal control by using light stimuli may open entirely new horizons for innovative...


Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 466
Author(s):  
Rachid Skouta

Maintaining the physiological level of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in the body is highly important in the fight against radical species in the context of human health [...]


Sign in / Sign up

Export Citation Format

Share Document