scholarly journals Description and basic evaluation of Beijing Normal University Earth System Model (BNU-ESM) version 1

2014 ◽  
Vol 7 (5) ◽  
pp. 2039-2064 ◽  
Author(s):  
D. Ji ◽  
L. Wang ◽  
J. Feng ◽  
Q. Wu ◽  
H. Cheng ◽  
...  

Abstract. An earth system model has been developed at Beijing Normal University (Beijing Normal University Earth System Model, BNU-ESM); the model is based on several widely evaluated climate model components and is used to study mechanisms of ocean-atmosphere interactions, natural climate variability and carbon-climate feedbacks at interannual to interdecadal time scales. In this paper, the model structure and individual components are described briefly. Further, results for the CMIP5 (Coupled Model Intercomparison Project phase 5) pre-industrial control and historical simulations are presented to demonstrate the model's performance in terms of the mean model state and the internal variability. It is illustrated that BNU-ESM can simulate many observed features of the earth climate system, such as the climatological annual cycle of surface-air temperature and precipitation, annual cycle of tropical Pacific sea surface temperature (SST), the overall patterns and positions of cells in global ocean meridional overturning circulation. For example, the El Niño-Southern Oscillation (ENSO) simulated in BNU-ESM exhibits an irregular oscillation between 2 and 5 years with the seasonal phase locking feature of ENSO. Important biases with regard to observations are presented and discussed, including warm SST discrepancies in the major upwelling regions, an equatorward drift of midlatitude westerly wind bands, and tropical precipitation bias over the ocean that is related to the double Intertropical Convergence Zone (ITCZ).

2014 ◽  
Vol 7 (2) ◽  
pp. 1601-1647 ◽  
Author(s):  
D. Ji ◽  
L. Wang ◽  
J. Feng ◽  
Q. Wu ◽  
H. Cheng ◽  
...  

Abstract. An earth system model has been developed at Beijing Normal University (Beijing Normal University Earth System Model, BNU-ESM); the model is based on several widely evaluated climate model components and is used to study mechanisms of ocean–atmosphere interactions, natural climate variability and carbon-climate feedbacks at interannual to interdecadal time scales. In this paper, the model structure and individual components are described briefly. Further, results for the CMIP5 (Coupled Model Intercomparison Project phase 5) pre-industrial control and historical simulations are presented to demonstrate the model's performance in terms of the mean model state and the internal variability. It is illustrated that BNU-ESM can simulate many observed features of the earth climate system, such as the climatological annual cycle of surface air temperature and precipitation, annual cycle of tropical Pacific sea surface temperature (SST), the overall patterns and positions of cells in global ocean meridional overturning circulation. For example, the El Niño-Southern Oscillation (ENSO) simulated in BNU-ESM exhibits an irregular oscillation between 2 and 5 years with the seasonal phase locking feature of ENSO. Important biases with regard to observations are presented and discussed, including warm SST discrepancies in the major upwelling regions, an equatorward drift of midlatitude westerly wind bands, and tropical precipitation bias over the ocean that is related to the double Intertropical Convergence Zone (ITCZ).


2021 ◽  
Author(s):  
Ying Bao ◽  
Zhenya Song ◽  
Fangli Qiao

<p>The First Institute of Oceanography Earth System Model (FIO-ESM) version 2.0 was developed and participated in the Climate Model Intercomparison Project phase 6 (CMIP6). In comparison with FIO-ESM v1.0, all component models of FIO-ESM v2.0 are updated, and their resolutions are fined. In addition to the non-breaking surface wave-induced mixing (Bv), which has also been included in FIO-ESM v1.0, there are three more distinctive physical processes in FIO-ESM v2.0, including the effect of surface wave Stokes drifts on air-sea momentum and heat fluxes, the effect of wave-induce sea spray on air-sea heat fluxes and the effect of sea surface temperature (SST) diurnal cycle on air-sea heat and gas fluxes. The FIO-ESM v2.0 has conducted the CMIP6 Diagnostic, Evaluation and Characterization of Klima (DECK) , historical and futrue scenario experiments. The results of pre-industrial run show the stability of the climate model. The historical simulation of FIO-ESM v2.0 for 1850-2014 is evaluated, including the surface air temperature (SAT), precipitation, SST, Atlantic Meridional Overturning Circulation (AMOC), El Niño-Southern Oscillation (ENSO), etc. The climate changes with respect to SAT and SST global warming and decreasing AMOC are well reproduced by FIO-ESM v2.0. The correlation coefficient of the global annual mean SAT anomaly can reach 0.92 with observations. In particular, the large warm SST bias at the east coast of tropical Pacific from FIO-ESM v1.0, which is a common challenge for all climate models, is dramatically reduced in FIO-ESM v2.0 and the ENSO period within the range of 2-7 years is well reproduced with the largest variation of SST anomalies occurring in boreal winter, which is consistent with observations.</p>


2019 ◽  
Vol 12 (7) ◽  
pp. 3099-3118 ◽  
Author(s):  
Kristian Strommen ◽  
Hannah M. Christensen ◽  
Dave MacLeod ◽  
Stephan Juricke ◽  
Tim N. Palmer

Abstract. We introduce and study the impact of three stochastic schemes in the EC-Earth climate model: two atmospheric schemes and one stochastic land scheme. These form the basis for a probabilistic Earth system model in atmosphere-only mode. Stochastic parametrization have become standard in several operational weather-forecasting models, in particular due to their beneficial impact on model spread. In recent years, stochastic schemes in the atmospheric component of a model have been shown to improve aspects important for the models long-term climate, such as El Niño–Southern Oscillation (ENSO), North Atlantic weather regimes, and the Indian monsoon. Stochasticity in the land component has been shown to improve the variability of soil processes and improve the representation of heatwaves over Europe. However, the raw impact of such schemes on the model mean is less well studied. It is shown that the inclusion of all three schemes notably changes the model mean state. While many of the impacts are beneficial, some are too large in amplitude, leading to significant changes in the model's energy budget and atmospheric circulation. This implies that in order to maintain the benefits of stochastic physics without shifting the mean state too far from observations, a full re-tuning of the model will typically be required.


2019 ◽  
Vol 12 (4) ◽  
pp. 1613-1642 ◽  
Author(s):  
Sandro F. Veiga ◽  
Paulo Nobre ◽  
Emanuel Giarolla ◽  
Vinicius Capistrano ◽  
Manoel Baptista Jr. ◽  
...  

Abstract. The performance of the coupled ocean–atmosphere component of the Brazilian Earth System Model version 2.5 (BESM-OA2.5) was evaluated in simulating the historical period 1850–2005. After a climate model validation procedure in which the main atmospheric and oceanic variabilities were evaluated against observed and reanalysis datasets, the evaluation specifically focused on the mean climate state and the most important large-scale climate variability patterns simulated in the historical run, which was forced by the observed greenhouse gas concentration. The most significant upgrades in the model's components are also briefly presented here. BESM-OA2.5 could reproduce the most important large-scale variabilities, particularly over the Atlantic Ocean (e.g., the North Atlantic Oscillation, the Atlantic Meridional Mode, and the Atlantic Meridional Overturning Circulation), and the extratropical modes that occur in both hemispheres. The model's ability to simulate such large-scale variabilities supports its usefulness for seasonal climate prediction and in climate change studies.


2018 ◽  
Author(s):  
Sandro F. Veiga ◽  
Paulo Nobre ◽  
Emanuel Giarolla ◽  
Vinicius Capistrano ◽  
Manoel Baptista Jr. ◽  
...  

Abstract. The performance of the coupled ocean-atmosphere component of the Brazilian Earth System Model version 2.5 (BESM-OA2.5) simulating the historical period 1850–2005 is evaluated. Following climate model validation procedure, in which the atmospheric and oceanic main variabilities are validated against observation and Reanalysis datasets, the evaluation particularly focuses the mean climate state and the most important large-scale climate variability patterns simulated in the historical run, which is forced by observed greenhouse gas concentration. The most significant upgrades in the model’s components are also presented briefly. BESM-OA2.5 is able to reproduce the most important large-scale variabilities, particularly over the Atlantic (e.g. the North Atlantic Oscillation, the Atlantic Meridional Mode and the Atlantic Meridional Overturning Circulation) and the extratropical modes that occur in both hemispheres. The model's ability in simulating large-scale variabilities indicates its usefulness for seasonal climate prediction and climate change studies.


2020 ◽  
Author(s):  
Young Ho Kim ◽  
Gyundo Pak ◽  
Yign Noh ◽  
Myong-In Lee ◽  
Sang-Wook Yeh ◽  
...  

<p>In our presentation, we will show the performance of a new earth system model developed at the Korea Institute of Ocean Science and Technology (KIOST), called the KIOST-ESM. The KIOST-ESM is based on a low-resolution version of the Geophysical Fluid Dynamics Laboratory Climate Model version 2.5. The main changes made to the base model include using new cumulus convection and ocean mixed layer parameterization schemes, which improve the model fidelity significantly. In addition, the KIOST-ESM adopts dynamic vegetation and new soil respiration schemes in its land model component. The performance of the KIOST-ESM was assessed in pre-industrial and historical simulations that are made as part of its participation into Climate Model Intercomparison Project phase 6. The response of the earth system to increases in greenhouse gas concentrations were analyzed in the ScenarioMIP simulations. The KIOST-ESM exhibited superior performance compared to the base model in terms of the mean sea surface temperature over the Southern Ocean and over the cold tongue in the tropical Pacific. The KIOST-ESM can also simulate the dominant tropical variability in the intraseasonal (Madden-Julian Oscillation) and interannual (El Niño-Southern Oscillation) timescales more realistically than the base model. On the other hand, like many other contemporary ESMs, the KIOST-ESM showed notable cold bias in the Northern Hemisphere, and the so-called double-Intertropical Convergence Zone bias remains. The ScenarioMIP results confirm the global average surface atmospheric temperature responds to the CO<sub>2</sub> concentration.</p>


2022 ◽  
Author(s):  
Chia-Te Chien ◽  
Jonathan V. Durgadoo ◽  
Dana Ehlert ◽  
Ivy Frenger ◽  
David P. Keller ◽  
...  

Abstract. The consideration of marine biogeochemistry is essential for simulating the carbon cycle in an Earth system model. Here we present the implementation and evaluation of a marine biogeochemical model, Model of Oceanic Pelagic Stoichiometry (MOPS) in the Flexible Ocean and Climate Infrastructure (FOCI) climate model. FOCI-MOPS enables the simulation of marine biological processes, the marine carbon, nitrogen and oxygen cycles, air-sea gas exchange of CO2 and O2, and simulations with prescribed atmospheric CO2 or CO2 emissions. A series of experiments covering the historical period (1850–2014) were performed following the DECK (Diagnostic, Evaluation and Characterization of Klima) and CMIP6 (Coupled Model Intercomparison Project 6) protocols. Overall, modelled biogeochemical tracer distributions and fluxes, as well as transient evolution in surface air temperature, air-sea CO2 fluxes, and changes of ocean carbon and heat, are in good agreement with observations. Modelled inorganic and organic tracer distributions are quantitatively evaluated by statistically-derived metrics. Results of the FOCI-MOPS model, also including sea surface temperature, surface pH, oxygen (100–600 m), nitrate (0–100 m), and primary production, are within the range of other CMIP6 model results. Overall, the evaluation of FOCI-MOPS indicates its suitability for Earth climate system simulations.


2012 ◽  
Vol 5 (3) ◽  
pp. 2811-2842 ◽  
Author(s):  
M. A. Chandler ◽  
L. E. Sohl ◽  
J. A. Jonas ◽  
H. J. Dowsett

Abstract. Climate reconstructions of the mid-Pliocene Warm Period (mPWP) bear many similarities to aspects of future global warming as projected by the Intergovernmental Panel on Climate Change. In particular, marine and terrestrial paleoclimate data point to high latitude temperature amplification, with associated decreases in sea ice and land ice and altered vegetation distributions that show expansion of warmer climate biomes into higher latitudes. NASA GISS climate models have been used to study the Pliocene climate since the USGS PRISM project first identified that the mid-Pliocene North Atlantic sea surface temperatures were anomalously warm. Here we present the most recent simulations of the Pliocene using the AR5/CMIP5 version of the GISS Earth System Model known as ModelE2-R. These simulations constitute the NASA contribution to the Pliocene Model Intercomparison Project (PlioMIP) Experiment 2. Many findings presented here corroborate results from other PlioMIP multi-model ensemble papers, but we also emphasize features in the ModelE2-R simulations that are unlike the ensemble means. We provide discussion of features that show considerable improvement compared with simulations from previous versions of the NASA GISS models, improvement defined here as simulation results that more closely resemble the ocean core data as well as the PRISM3D reconstructions of the mid-Pliocene climate. In some regions even qualitative agreement between model results and paleodata are an improvement over past studies, but the dramatic warming in the North Atlantic and Greenland-Iceland-Norwegian Sea in these new simulations is by far the most accurate portrayal ever of this key geographic region by the GISS climate model. Our belief is that continued development of key physical routines in the atmospheric model, along with higher resolution and recent corrections to mixing parameterizations in the ocean model, have led to an Earth System Model that will produce more accurate projections of future climate.


2015 ◽  
Vol 12 (11) ◽  
pp. 3301-3320 ◽  
Author(s):  
K. B. Rodgers ◽  
J. Lin ◽  
T. L. Frölicher

Abstract. Marine ecosystems are increasingly stressed by human-induced changes. Marine ecosystem drivers that contribute to stressing ecosystems – including warming, acidification, deoxygenation and perturbations to biological productivity – can co-occur in space and time, but detecting their trends is complicated by the presence of noise associated with natural variability in the climate system. Here we use large initial-condition ensemble simulations with an Earth system model under a historical/RCP8.5 (representative concentration pathway 8.5) scenario over 1950–2100 to consider emergence characteristics for the four individual and combined drivers. Using a 1-standard-deviation (67% confidence) threshold of signal to noise to define emergence with a 30-year trend window, we show that ocean acidification emerges much earlier than other drivers, namely during the 20th century over most of the global ocean. For biological productivity, the anthropogenic signal does not emerge from the noise over most of the global ocean before the end of the 21st century. The early emergence pattern for sea surface temperature in low latitudes is reversed from that of subsurface oxygen inventories, where emergence occurs earlier in the Southern Ocean. For the combined multiple-driver field, 41% of the global ocean exhibits emergence for the 2005–2014 period, and 63% for the 2075–2084 period. The combined multiple-driver field reveals emergence patterns by the end of this century that are relatively high over much of the Southern Ocean, North Pacific, and Atlantic, but relatively low over the tropics and the South Pacific. For the case of two drivers, the tropics including habitats of coral reefs emerges earliest, with this driven by the joint effects of acidification and warming. It is precisely in the regions with pronounced emergence characteristics where marine ecosystems may be expected to be pushed outside of their comfort zone determined by the degree of natural background variability to which they are adapted. The results underscore the importance of sustained multi-decadal observing systems for monitoring multiple ecosystems drivers.


2021 ◽  
Author(s):  
Ralf Döscher ◽  
Mario Acosta ◽  
Andrea Alessandri ◽  
Peter Anthoni ◽  
Almut Arneth ◽  
...  

Abstract. The Earth System Model EC-Earth3 for contributions to CMIP6 is documented here, with its flexible coupling framework, major model configurations, a methodology for ensuring the simulations are comparable across different HPC systems, and with the physical performance of base configurations over the historical period. The variety of possible configurations and sub-models reflects the broad interests in the EC-Earth community. EC-Earth3 key performance metrics demonstrate physical behaviour and biases well within the frame known from recent CMIP models. With improved physical and dynamic features, new ESM components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond.


Sign in / Sign up

Export Citation Format

Share Document