scholarly journals Description and implementation of a MiXed Layer model (MXL, v1.0) for the dynamics of the atmospheric boundary layer in the Modular Earth Submodel System (MESSy)

2015 ◽  
Vol 8 (3) ◽  
pp. 453-471 ◽  
Author(s):  
R. H. H. Janssen ◽  
A. Pozzer

Abstract. We present a new submodel for the Modular Earth Submodel System (MESSy): the MiXed Layer (MXL) model for the diurnal dynamics of the convective boundary layer, including explicit representations of entrainment and surface fluxes. This submodel is embedded in a new MESSy base model (VERTICO), which represents a single atmospheric column. With the implementation of MXL in MESSy, MXL can be used in combination with other MESSy submodels that represent processes related to atmospheric chemistry. For instance, the coupling of MXL with more advanced modules for gas-phase chemistry (such as the Mainz Isoprene Mechanism 2 (MIM2)), emissions, dry deposition and organic aerosol formation than in previous versions of the MXL code is possible. Since MXL is now integrated in the MESSy framework, it can take advantage of future developments of this framework, such as the inclusion of new process submodels. The coupling of MXL with submodels that represent other processes relevant to chemistry in the atmospheric boundary layer (ABL) yields a computationally inexpensive tool that is ideally suited for the analysis of field data, for evaluating new parametrizations for 3-D models, and for performing systematic sensitivity analyses. A case study for the DOMINO campaign in southern Spain is shown to demonstrate the use and performance of MXL/MESSy in reproducing and analysing field observations.

2014 ◽  
Vol 7 (5) ◽  
pp. 7197-7238 ◽  
Author(s):  
R. H. H. Janssen ◽  
A. Pozzer

Abstract. We present a new submodel for the Modular Earth Submodel System (MESSy): the MiXed Layer (MXL) model for the diurnal dynamics of the convective boundary layer, including explicit representations of entrainment and surface fluxes. Through the MESSy interface, MXL is coupled with modules that represent other processes relevant to chemistry in the atmospheric boundary layer (ABL). In combination, these provide a computationally inexpensive tool that is ideally suited for the analysis of field data, for evaluating new parametrizations for 3-D models, and for performing systematic sensitivity analyses. A case study for the DOMINO campaign in Southern Spain is shown to demonstrate the use and performance of MXL/MESSy in reproducing and analysing field observations.


1995 ◽  
Vol 13 (10) ◽  
pp. 1075-1086 ◽  
Author(s):  
A. Réchou ◽  
P. Durand ◽  
A. Druilhet ◽  
B. Bénech

Abstract. The SOFIA (Surface of the Ocean: Flux and Interaction with the Atmosphere) experiment, included in the ASTEX (Atlantic Stratocumulus Transition Experiment) field program, was conducted in June 1992 in the Azores region in order to investigate air-sea exchanges, as well as the structure of the atmospheric boundary layer and its capping low-level cloud cover. We present an analysis of the vertical structure of the marine atmospheric boundary layer (MABL), and especially of its turbulence characteristics, deduced from the aircraft missions performed during SOFIA. The meteorological situations were characteristic of a temperate latitude under anticyclonic conditions, i.e., with weak to moderate winds, weak surface sensible heat flux, and broken capping low-altitude cloud cover topped by a strong trade inversion. We show that the mixed layer, driven by the surface fluxes, is decoupled from the above cloud layer. Although weak, the surface buoyancy flux, and the convective velocity scale deduced from it, are relevant for scaling the turbulence moments. The mixed layer then follows the behaviour of a continental convective boundary layer, with the exception of the entrainment process, which is weak in the SOFIA data. These results are confirmed by conditional sampling analysis, which shows that the major turbulence source lies in the buoyant moist updrafts at the surface.


2017 ◽  
Author(s):  
Liang Feng ◽  
Paul I. Palmer ◽  
Robyn Butler ◽  
Stephen J. Andrews ◽  
Elliot L. Atlas ◽  
...  

Abstract. We infer surface fluxes of bromoform (CHBr3) and dibromoform (CH2Br2) from aircraft observations over the western Pacific using a tagged version of the GEOS-Chem global 3-D atmospheric chemistry model and a Maximum A Posteriori inverse model. The distribution of a priori ocean emissions of these gases are reasonably consistent with observed atmospheric mole fractions of CHBr3 (r = 0.62) and CH2Br2 (r = 0.38). These a priori emissions result in a positive model bias in CHBr3 peaking in the marine boundary layer, but capture observed values of CH2Br2 with no significant bias by virtue of its longer atmospheric lifetime. Using GEOS-Chem, we find that observed variations in atmospheric CHBr3 are determined equally by sources over the western Pacific and those outside the study region, but observed variations in CH2Br2 are determined mainly by sources outside the western Pacific. Numerical closed-loop experiments show that the spatial and temporal distribution of boundary layer aircraft data have the potential to substantially improve current knowledge of these fluxes, with improvements related to data density. Using the aircraft data, we estimate aggregated regional fluxes of 3.6 ± 0.3 × 108 g/month and 0.7 ± 0.1 × 108 g/month for CHBr3 and CH2Br2 over 130°–155° E and 0°–12° N, respectively, which represent reductions of 20–40 % and substantial spatial deviations from the a priori inventory. We find no evidence to support a robust linear relationship between CHBr3 and CH2Br2 oceanic emissions, as used by previous studies.


2011 ◽  
Vol 11 (12) ◽  
pp. 5591-5601 ◽  
Author(s):  
J. Lauros ◽  
A. Sogachev ◽  
S. Smolander ◽  
H. Vuollekoski ◽  
S.-L. Sihto ◽  
...  

Abstract. We carried out column model simulations to study particle fluxes and deposition and to evaluate different particle formation mechanisms at a boreal forest site in Finland. We show that kinetic nucleation of sulphuric acid cannot be responsible for new particle formation alone as the simulated vertical profile of particle number concentration does not correspond to observations. Instead organic induced nucleation leads to good agreement confirming the relevance of the aerosol formation mechanism including organic compounds emitted by the biosphere. The simulation of aerosol concentration within the atmospheric boundary layer during nucleation event days shows a highly dynamical picture, where particle formation is coupled with chemistry and turbulent transport. We have demonstrated the suitability of our turbulent mixing scheme in reproducing the most important characteristics of particle dynamics within the boundary layer. Deposition and particle flux simulations show that deposition affects noticeably only the smallest particles in the lowest part of the atmospheric boundary layer.


2019 ◽  
Vol 77 (3) ◽  
pp. 1081-1100 ◽  
Author(s):  
Neil P. Lareau

Abstract Doppler and Raman lidar observations of vertical velocity and water vapor mixing ratio are used to probe the physics and statistics of subcloud and cloud-base latent heat fluxes during cumulus convection at the ARM Southern Great Plains (SGP) site in Oklahoma, United States. The statistical results show that latent heat fluxes increase with height from the surface up to ~0.8Zi (where Zi is the convective boundary layer depth) and then decrease to ~0 at Zi. Peak fluxes aloft exceeding 500 W m−2 are associated with periods of increased cumulus cloud cover and stronger jumps in the mean humidity profile. These entrainment fluxes are much larger than the surface fluxes, indicating substantial drying over the 0–0.8Zi layer accompanied by moistening aloft as the CBL deepens over the diurnal cycle. We also show that the boundary layer humidity budget is approximately closed by computing the flux divergence across the 0–0.8Zi layer. Composite subcloud velocity and water vapor anomalies show that clouds are linked to coherent updraft and moisture plumes. The moisture anomaly is Gaussian, most pronounced above 0.8Zi and systematically wider than the velocity anomaly, which has a narrow central updraft flanked by downdrafts. This size and shape disparity results in downdrafts characterized by a high water vapor mixing ratio and thus a broad joint probability density function (JPDF) of velocity and mixing ratio in the upper CBL. We also show that cloud-base latent heat fluxes can be both positive and negative and that the instantaneous positive fluxes can be very large (~10 000 W m−2). However, since cloud fraction tends to be small, the net impact of these fluxes remains modest.


2018 ◽  
Vol 75 (7) ◽  
pp. 2317-2336 ◽  
Author(s):  
Bowen Zhou ◽  
Shiwei Sun ◽  
Kai Yao ◽  
Kefeng Zhu

Abstract Turbulent mixing in the daytime convective boundary layer (CBL) is carried out by organized nonlocal updrafts and smaller local eddies. In the upper mixed layer of the CBL, heat fluxes associated with nonlocal updrafts are directed up the local potential temperature gradient. To reproduce such countergradient behavior in parameterizations, a class of planetary boundary layer schemes adopts a countergradient correction term in addition to the classic downgradient eddy-diffusion term. Such schemes are popular because of their simple formulation and effective performance. This study reexamines those schemes to investigate the physical representations of the gradient and countergradient (GCG) terms, and to rebut the often-implied association of the GCG terms with heat fluxes due to local and nonlocal (LNL) eddies. To do so, large-eddy simulations (LESs) of six idealized CBL cases are performed. The GCG fluxes are computed a priori with horizontally averaged LES data, while the LNL fluxes are diagnosed through conditional sampling and Fourier decomposition of the LES flow field. It is found that in the upper mixed layer, the gradient term predicts downward fluxes in the presence of positive mean potential temperature gradient but is compensated by the upward countergradient correction flux, which is larger than the total heat flux. However, neither downward local fluxes nor larger-than-total nonlocal fluxes are diagnosed from LES. The difference reflects reduced turbulence efficiency for GCG fluxes and, in terms of physics, conceptual deficiencies in the GCG representation of CBL heat fluxes.


2019 ◽  
Vol 2019 (1) ◽  
pp. 21-47 ◽  
Author(s):  
Shuzhan Ren

Abstract A solution to the 3D transport equation for passive tracers in the atmospheric boundary layer (ABL), formulated in terms of Green’s function (GF), is derived to show the connection between the concentration and surface fluxes of passive tracers through GF. Analytical solutions to the 1D vertical diffusion equation are derived to reveal the nonlinear dependence of the concentration and flux on the diffusivity, time, and height, and are employed to examine the impact of the diffusivity on the diurnal variations of CO2 in the ABL. The properties of transport operator H and their implications in inverse modeling are discussed. It is found that H has a significant contribution to the rectifier effect in the diurnal variations of CO2. Since H is the integral of GF in time, the narrow distribution of GF in time justifies the reduction of the size of H in inverse modeling. The exponential decay of GF with height suggests that the estimated surface fluxes in inverse modeling are more sensitive to the observations in the lower ABL. The solutions and first mean value theorem are employed to discuss the uncertainties associated with the concentration–mean surface flux equation used to link the concentrations and mean surface flux. Both analytical and numerical results show that the equation can introduce big errors, particularly when surface flux is sign indefinite. Numerical results show that the conclusions about the evolution properties of passive tracers based on the analytical solutions also hold in the cases with a more complicated diffusion coefficient and time-varying ABL height.


2014 ◽  
Vol 142 (11) ◽  
pp. 3955-3976 ◽  
Author(s):  
Christopher J. Nowotarski ◽  
Paul M. Markowski ◽  
Yvette P. Richardson ◽  
George H. Bryan

Abstract Nearly all previous numerical simulations of supercell thunderstorms have neglected surface fluxes of heat, moisture, and momentum. This choice precludes horizontal inhomogeneities associated with dry boundary layer convection in the near-storm environment. As part of a broader study on how mature supercell thunderstorms are affected by a convective boundary layer (CBL) with quasi-two-dimensional features (i.e., boundary layer rolls), this paper documents the methods used to develop a realistic CBL in an idealized environment supportive of supercells. The evolution and characteristics of the modeled CBL, including the horizontal variability of thermodynamic and kinematic quantities known to affect supercell evolution, are presented. The simulated rolls result in periodic bands of perturbations in temperature, moisture, convective available potential energy (CAPE), vertical wind shear, and storm-relative helicity (SRH). Vertical vorticity is shown to arise within the boundary layer through the tilting of ambient horizontal vorticity associated with the background shear by vertical velocity perturbations in the turbulent CBL. Sensitivity tests suggest that 200-m horizontal grid spacing is adequate to represent rolls using a large-eddy simulation (LES) approach.


Sign in / Sign up

Export Citation Format

Share Document