scholarly journals Utility of daily vs. monthly large-scale climate data: an intercomparison of two statistical downscaling methods

2008 ◽  
Vol 12 (2) ◽  
pp. 551-563 ◽  
Author(s):  
E. P. Maurer ◽  
H. G. Hidalgo

Abstract. Downscaling of climate model data is essential to local and regional impact analysis. We compare two methods of statistical downscaling to produce continuous, gridded time series of precipitation and surface air temperature at a 1/8-degree (approximately 140 km2 per grid cell) resolution over the western U.S. We use NCEP/NCAR Reanalysis data from 1950–1999 as a surrogate General Circulation Model (GCM). The two methods included are constructed analogues (CA) and a bias correction and spatial downscaling (BCSD), both of which have been shown to be skillful in different settings, and BCSD has been used extensively in hydrologic impact analysis. Both methods use the coarse scale Reanalysis fields of precipitation and temperature as predictors of the corresponding fine scale fields. CA downscales daily large-scale data directly and BCSD downscales monthly data, with a random resampling technique to generate daily values. The methods produce generally comparable skill in producing downscaled, gridded fields of precipitation and temperatures at a monthly and seasonal level. For daily precipitation, both methods exhibit limited skill in reproducing both observed wet and dry extremes and the difference between the methods is not significant, reflecting the general low skill in daily precipitation variability in the reanalysis data. For low temperature extremes, the CA method produces greater downscaling skill than BCSD for fall and winter seasons. For high temperature extremes, CA demonstrates higher skill than BCSD in summer. We find that the choice of most appropriate downscaling technique depends on the variables, seasons, and regions of interest, on the availability of daily data, and whether the day to day correspondence of weather from the GCM needs to be reproduced for some applications. The ability to produce skillful downscaled daily data depends primarily on the ability of the climate model to show daily skill.

2007 ◽  
Vol 4 (5) ◽  
pp. 3413-3440 ◽  
Author(s):  
E. P. Maurer ◽  
H. G. Hidalgo

Abstract. Downscaling of climate model data is essential to most impact analysis. We compare two methods of statistical downscaling to produce continuous, gridded time series of precipitation and surface air temperature at a 1/8-degree (approximately 140 km² per grid cell) resolution over the western U.S. We use NCEP/NCAR Reanalysis data from 1950–1999 as a surrogate General Circulation Model (GCM). The two methods included are constructed analogues (CA) and a bias correction and spatial downscaling (BCSD), both of which have been shown to be skillful in different settings, and BCSD has been used extensively in hydrologic impact analysis. Both methods use the coarse scale Reanalysis fields of precipitation and temperature as predictors of the corresponding fine scale fields. CA downscales daily large-scale data directly and BCSD downscales monthly data, with a random resampling technique to generate daily values. The methods produce comparable skill in producing downscaled, gridded fields of precipitation and temperatures at a monthly and seasonal level. For daily precipitation, both methods exhibit some skill in reproducing both observed wet and dry extremes and the difference between the methods is not significant, reflecting the general low skill in daily precipitation variability in the reanalysis data. For low temperature extremes, the CA method produces greater downscaling skill than BCSD for fall and winter seasons. For high temperature extremes, CA demonstrates higher skill than BCSD in summer. We find that the choice of most appropriate downscaling technique depends on the variables, seasons, and regions of interest, on the availability of daily data, and whether the day to day correspondence of weather from the GCM needs to be reproduced for some applications. The ability to produce skillful downscaled daily data depends primarily on the ability of the climate model to show daily skill.


2016 ◽  
Vol 7 (4) ◽  
pp. 683-707
Author(s):  
D. A. Sachindra ◽  
F. Huang ◽  
A. Barton ◽  
B. J. C. Perera

Using a key station approach, statistical downscaling of monthly general circulation model outputs to monthly precipitation, evaporation, minimum temperature and maximum temperature at 17 observation stations located in Victoria, Australia was performed. Using the observations of each predictand, over the period 1950–2010, correlations among all stations were computed. For each predictand, the station which showed the highest number of correlations above 0.80 with other stations was selected as the first key station. The stations that were highly correlated with that key station were considered as the member stations of the first cluster. By employing this same procedure on the remaining stations, the next key station was found. This procedure was performed until all stations were segregated into clusters. Thereafter, using the observations of each predictand, regression equations (inter-station regression relationships) were developed between the key stations and the member stations for each calendar month. The downscaling models at the key stations were developed using reanalysis data as inputs to them. The outputs of HadCM3 pertaining to A2 emission scenario were introduced to these downscaling models to produce projections of the predictands over the period 2000–2099. Then the outputs of these downscaling models were introduced to the inter-station regression relationships to produce projections of predictands at all member stations.


2016 ◽  
Vol 78 (6-12) ◽  
Author(s):  
Mahiuddin Alamgir ◽  
Sahar Hadi Pour ◽  
Morteza Mohsenipour ◽  
M. Mehedi Hasan ◽  
Tarmizi Ismail

Reliable projection of future rainfall in Bangladesh is very important for the assessment of possible impacts of climate change and implementation of necessary adaptation and mitigation measures. Statistical downscaling methods are widely used for downscaling coarse resolution general circulation model (GCM) output at local scale. Selection of predictors and their spatial domain is very important to facilitate downscaling future climate projected by GCMs. The present paper reports the finding of the study conducted to identify the GCM predictors and demarcate their climatic domain for statistical downscaling in Bangladesh at local or regional scale. Twenty-six large scale atmospheric variables which are widely simulated GCM predictors from 45 grid points around the country were analysed using various statistical methods for this purpose. The study reveals that large-scale atmospheric variables at the grid points located in the central-west part of Bangladesh have the highest influence on rainfall.  It is expected that the finding of the study will help different meteorological and agricultural organizations of Bangladesh to project rainfall and temperature at local scale in order to provide various agricultural or hydrological services.


2005 ◽  
Vol 18 (7) ◽  
pp. 1086-1095 ◽  
Author(s):  
Timothy J. Mosedale ◽  
David B. Stephenson ◽  
Matthew Collins

Abstract A simple linear stochastic climate model of extratropical wintertime ocean–atmosphere coupling is used to diagnose the daily interactions between the ocean and the atmosphere in a fully coupled general circulation model. Monte Carlo simulations with the simple model show that the influence of the ocean on the atmosphere can be difficult to estimate, being biased low even with multiple decades of daily data. Despite this, fitting the simple model to the surface air temperature and sea surface temperature data from the complex general circulation model reveals an ocean-to-atmosphere influence in the northeastern Atlantic. Furthermore, the simple model is used to demonstrate that the ocean in this region greatly enhances the autocorrelation in overlying lower-tropospheric temperatures at lags from a few days to many months.


2012 ◽  
Vol 25 (2) ◽  
pp. 509-526 ◽  
Author(s):  
Liang Ning ◽  
Michael E. Mann ◽  
Robert Crane ◽  
Thorsten Wagener

Abstract This study uses a statistical downscaling method based on self-organizing maps (SOMs) to produce high-resolution, downscaled precipitation estimates over the state of Pennsylvania in the mid-Atlantic region of the United States. The SOMs approach derives a transfer function between large-scale mean atmospheric states and local meteorological variables (daily point precipitation values) of interest. First, the SOM was trained using seven coarsely resolved atmospheric variables from the National Centers for Environmental Prediction (NCEP) reanalysis dataset to model observed daily precipitation data from 17 stations across Pennsylvania for the period 1979–2005. Employing the same coarsely resolved variables from nine general circulation model (GCM) simulations taken from the historical analysis of the Coupled Model Intercomparison Project, phase 3 (CMIP3), the trained SOM was subsequently applied to simulate daily precipitation at the same 17 sites for the period 1961–2000. The SOM analysis indicates that the nine model simulations exhibit similar synoptic-scale features to the (NCEP) observations over the 1979–2007 training interval. An analysis of the sea level pressure signatures and the precipitation distribution corresponding to the trained SOM shows that it is effective in differentiating characteristic synoptic circulation patterns and associated precipitation. The downscaling approach provides a faithful reproduction of the observed probability distributions and temporal characteristics of precipitation on both daily and monthly time scales. The downscaled precipitation field shows significant improvement over the raw GCM precipitation fields with regard to observed average monthly precipitation amounts, average monthly number of rainy days, and standard deviations of monthly precipitation amounts, although certain caveats are noted.


2005 ◽  
Vol 62 (9) ◽  
pp. 3353-3367 ◽  
Author(s):  
Joseph Galewsky ◽  
Adam Sobel ◽  
Isaac Held

Abstract A technique for diagnosing the mechanisms that control the humidity in a general circulation model (GCM) or observationally derived meteorological analysis dataset is presented. The technique involves defining a large number of tracers, each of which represents air that has last been saturated in a particular region of the atmosphere. The time-mean tracer fields show the typical pathways that air parcels take between one occurrence of saturation and the next. The tracers provide useful information about how different regions of the atmosphere influence the humidity elsewhere. Because saturation vapor pressure is a function only of temperature and assuming mixing ratio is conserved for unsaturated parcels, these tracer fields can also be used together with the temperature field to reconstruct the water vapor field. The technique is first applied to an idealized GCM in which the dynamics are dry and forced using the Held–Suarez thermal relaxation, but the model carries a passive waterlike tracer that is emitted at the surface and lost due to large-scale condensation with zero latent heat release and no condensate retained. The technique provides an accurate reconstruction of the simulated water vapor field. In this model, the dry air in the subtropical troposphere is produced primarily by isentropic transport and is moistened somewhat by mixing with air from lower levels, which has not been saturated since last contact with the surface. The technique is then applied to the NCEP–NCAR reanalysis data from December–February (DJF) 2001/02, using the offline tracer transport model MATCH. The results show that the dryness of the subtropical troposphere is primarily controlled by isentropic transport of very dry air by midlatitude eddies and that diabatic descent from the tropical upper troposphere plays a secondary role in controlling the dryness of the subtropics.


2007 ◽  
Vol 135 (6) ◽  
pp. 2365-2378 ◽  
Author(s):  
P. Friederichs ◽  
A. Hense

Abstract A statistical downscaling approach for extremes using censored quantile regression is presented. Conditional quantiles of station data (e.g., daily precipitation sums) in Germany are estimated by means of the large-scale circulation as represented by the NCEP reanalysis data. It is shown that a mixed discrete–continuous response variable, such as a daily precipitation sum, can be statistically modeled by a censored variable. Furthermore, a conditional quantile skill score is formulated to assess the relative gain of a quantile forecast compared with a reference forecast. Just like multiple regression for expectation values, quantile regression provides a tool to formulate a model output statistics system for extremal quantiles.


2007 ◽  
Vol 7 (6) ◽  
pp. 17261-17297 ◽  
Author(s):  
P. J. Telford ◽  
P. Braesicke ◽  
O. Morgenstern ◽  
J. A. Pyle

Abstract. We present a "nudged" version of the Met Office general circulation model, the Unified Model. We constrain this global climate model using ERA-40 reanalysis data with the aim of reproducing the observed "weather" over a year from September 1999. Quantitative assessments are made of its performance, focussing on dynamical aspects of nudging and demonstrating that the "weather" is well simulated.


2018 ◽  
Vol 50 (1) ◽  
pp. 1-23 ◽  
Author(s):  
Aida Hosseini Baghanam ◽  
Vahid Nourani ◽  
Mohammad-Ali Keynejad ◽  
Hassan Taghipour ◽  
Mohammad-Taghi Alami

Abstract Important issues in statistical downscaling of general circulation models (GCMs) is to select dominant large-scale climate data (predictors). This study developed a predictor screening framework, which integrates wavelet-entropy (WE) and self-organizing map (SOM) to downscale station rainfall. WEs were computed as the representatives of predictors and fed into the SOM to cluster the predictors. SOM-based clustering of predictors according to WEs could lead to physically meaningful selection of the dominant predictors. Then, artificial neural network (ANN) as the statistical downscaling method was developed. To assess the advantages of different GCMs, multi-GCM ensemble approach was used by Can-ESM2, BNU-ESM, and INM-CM4 GCMs. Moreover, NCEP reanalysis data were used to calibrate downscaling model as well for comparison purposes. The calibration, validation, and projection of the proposed model were performed during January 1951 to December 1991, January 1992 to December 2005 and January 2017 to December 2100, respectively. The proposed data screening model could reduce the dimensionality of data and select appropriate predictors for generalizing future rainfall. Results showed better performance of ANN than multiple linear regression (MLR) model. The projection results yielded 29% and 21% decrease of rainfall at the study area for 2017–2050 under RCPs 4.5 and 8.5, respectively.


2016 ◽  
Author(s):  
Hossein Tabari ◽  
Rozemien De Troch ◽  
Olivier Giot ◽  
Rafiq Hamdi ◽  
Piet Termonia ◽  
...  

Abstract. This study explores whether climate models with higher spatial resolution provide higher accuracy for precipitation simulations and/or different climate change signals. The outputs from two convection-permitting climate models (ALARO and CCLM) with a spatial resolution of 3–4 km are compared with those from the coarse scale driving models or reanalysis data for simulating/projecting daily and sub-daily precipitation quantiles. The high-resolution ALARO and CCLM models reveal an added value to capture sub-daily precipitation extremes during summer compared to the driving GCMs and reanalysis data. Further validation of historical climate simulations based on design precipitation statistics derived from intensity–duration–frequency (IDF) curves shows a better match of the convection-permitting model results with the observations-based IDF statistics. Results moreover indicate that one has to be careful in assuming spatial scale independency of climate change signals for the delta change downscaling method, as high-resolution models may show larger changes in extreme precipitation. These larger changes appear to be dependent on the climate model, since such intensification is not observed for the ALARO model.


Sign in / Sign up

Export Citation Format

Share Document