scholarly journals Probabilistic Projections of Climate Change for the Mid-Atlantic Region of the United States: Validation of Precipitation Downscaling during the Historical Era*

2012 ◽  
Vol 25 (2) ◽  
pp. 509-526 ◽  
Author(s):  
Liang Ning ◽  
Michael E. Mann ◽  
Robert Crane ◽  
Thorsten Wagener

Abstract This study uses a statistical downscaling method based on self-organizing maps (SOMs) to produce high-resolution, downscaled precipitation estimates over the state of Pennsylvania in the mid-Atlantic region of the United States. The SOMs approach derives a transfer function between large-scale mean atmospheric states and local meteorological variables (daily point precipitation values) of interest. First, the SOM was trained using seven coarsely resolved atmospheric variables from the National Centers for Environmental Prediction (NCEP) reanalysis dataset to model observed daily precipitation data from 17 stations across Pennsylvania for the period 1979–2005. Employing the same coarsely resolved variables from nine general circulation model (GCM) simulations taken from the historical analysis of the Coupled Model Intercomparison Project, phase 3 (CMIP3), the trained SOM was subsequently applied to simulate daily precipitation at the same 17 sites for the period 1961–2000. The SOM analysis indicates that the nine model simulations exhibit similar synoptic-scale features to the (NCEP) observations over the 1979–2007 training interval. An analysis of the sea level pressure signatures and the precipitation distribution corresponding to the trained SOM shows that it is effective in differentiating characteristic synoptic circulation patterns and associated precipitation. The downscaling approach provides a faithful reproduction of the observed probability distributions and temporal characteristics of precipitation on both daily and monthly time scales. The downscaled precipitation field shows significant improvement over the raw GCM precipitation fields with regard to observed average monthly precipitation amounts, average monthly number of rainy days, and standard deviations of monthly precipitation amounts, although certain caveats are noted.

2012 ◽  
Vol 25 (15) ◽  
pp. 5273-5291 ◽  
Author(s):  
Liang Ning ◽  
Michael E. Mann ◽  
Robert Crane ◽  
Thorsten Wagener ◽  
Raymond G. Najjar ◽  
...  

Abstract This study uses an empirical downscaling method based on self-organizing maps (SOMs) to produce high-resolution, downscaled precipitation projections over the state of Pennsylvania in the mid-Atlantic region of the United States for the future period 2046–65. To examine the sensitivity of precipitation change to the water vapor increase brought by global warming, the authors test the following two approaches to downscaling: one uses the specific humidity in the downscaling algorithm and the other does not. Application of the downscaling procedure to the general circulation model (GCM) projections reveals changes in the relative occupancy, but not the fundamental nature, of the simulated synoptic circulation states. Both downscaling approaches predict increases in annual and winter precipitation, consistent in sign with the “raw” output from the GCMs but considerably smaller in magnitude. For summer precipitation, larger discrepancies are seen between raw and downscaled GCM projections, with a substantial dependence on the downscaling version used (downscaled precipitation changes employing specific humidity are smaller than those without it). Application of downscaling generally reduces the inter-GCM uncertainties, suggesting that some of the spread among models in the raw projected precipitation may result from differences in precipitation parameterization schemes rather than fundamentally different climate responses. Projected changes in the North Atlantic Oscillation (NAO) are found to be significantly related to changes in winter precipitation in the downscaled results, but not for the raw GCM results, suggesting that the downscaling more effectively captures the influence of climate dynamics on projected changes in winter precipitation.


2013 ◽  
Vol 17 (6) ◽  
pp. 2147-2159 ◽  
Author(s):  
E. P. Maurer ◽  
T. Das ◽  
D. R. Cayan

Abstract. When correcting for biases in general circulation model (GCM) output, for example when statistically downscaling for regional and local impacts studies, a common assumption is that the GCM biases can be characterized by comparing model simulations and observations for a historical period. We demonstrate some complications in this assumption, with GCM biases varying between mean and extreme values and for different sets of historical years. Daily precipitation and maximum and minimum temperature from late 20th century simulations by four GCMs over the United States were compared to gridded observations. Using random years from the historical record we select a "base" set and a 10 yr independent "projected" set. We compare differences in biases between these sets at median and extreme percentiles. On average a base set with as few as 4 randomly-selected years is often adequate to characterize the biases in daily GCM precipitation and temperature, at both median and extreme values; 12 yr provided higher confidence that bias correction would be successful. This suggests that some of the GCM bias is time invariant. When characterizing bias with a set of consecutive years, the set must be long enough to accommodate regional low frequency variability, since the bias also exhibits this variability. Newer climate models included in the Intergovernmental Panel on Climate Change fifth assessment will allow extending this study for a longer observational period and to finer scales.


2007 ◽  
Vol 4 (5) ◽  
pp. 3413-3440 ◽  
Author(s):  
E. P. Maurer ◽  
H. G. Hidalgo

Abstract. Downscaling of climate model data is essential to most impact analysis. We compare two methods of statistical downscaling to produce continuous, gridded time series of precipitation and surface air temperature at a 1/8-degree (approximately 140 km² per grid cell) resolution over the western U.S. We use NCEP/NCAR Reanalysis data from 1950–1999 as a surrogate General Circulation Model (GCM). The two methods included are constructed analogues (CA) and a bias correction and spatial downscaling (BCSD), both of which have been shown to be skillful in different settings, and BCSD has been used extensively in hydrologic impact analysis. Both methods use the coarse scale Reanalysis fields of precipitation and temperature as predictors of the corresponding fine scale fields. CA downscales daily large-scale data directly and BCSD downscales monthly data, with a random resampling technique to generate daily values. The methods produce comparable skill in producing downscaled, gridded fields of precipitation and temperatures at a monthly and seasonal level. For daily precipitation, both methods exhibit some skill in reproducing both observed wet and dry extremes and the difference between the methods is not significant, reflecting the general low skill in daily precipitation variability in the reanalysis data. For low temperature extremes, the CA method produces greater downscaling skill than BCSD for fall and winter seasons. For high temperature extremes, CA demonstrates higher skill than BCSD in summer. We find that the choice of most appropriate downscaling technique depends on the variables, seasons, and regions of interest, on the availability of daily data, and whether the day to day correspondence of weather from the GCM needs to be reproduced for some applications. The ability to produce skillful downscaled daily data depends primarily on the ability of the climate model to show daily skill.


2010 ◽  
Vol 23 (16) ◽  
pp. 4327-4341 ◽  
Author(s):  
Philip J. Pegion ◽  
Arun Kumar

Abstract A set of idealized global model experiments was performed by several modeling centers as part of the Drought Working Group of the U.S. Climate Variability and Predictability component of the World Climate Research Programme (CLIVAR). The purpose of the experiments was to assess the role of the leading modes of sea surface temperature (SST) variability on the climate over the continents, with particular emphasis on the influence of SSTs on surface climate variability and droughts over the United States. An analysis based on several models gives more creditability to the results since it relies on the assessment of impacts that are robust across different models. Coordinated atmospheric general circulation model (AGCM) simulations forced with three modes of SST variability were analyzed. The results show that the SST-forced precipitation variability over the central United States is dominated by the SST mode with maximum loading in the central Pacific Ocean. The SST mode with loading in the Atlantic Ocean, and a mode that is dominated by trends in SSTs, lead to a smaller response. Based on the response to the idealized SSTs, the precipitation response for the twentieth century was also reconstructed. A comparison with the Atmospheric Model Intercomparison Project (AMIP) simulations forced with the observed SSTs illustrates that the reconstructed precipitation variability was similar to the one in the AMIP simulations, further supporting the conclusion that the SST modes identified in the present analysis play a dominant role in the precipitation variability over the United States. One notable exception is the Dust Bowl of the 1930s, and further analysis regarding this major climate extreme is discussed.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1704
Author(s):  
William Battaglin ◽  
Lauren Hay ◽  
David Lawrence ◽  
Greg McCabe ◽  
Parker Norton

The National Park Service (NPS) manages hundreds of parks in the United States, and many contain important aquatic ecosystems and/or threatened and endangered aquatic species vulnerable to hydro-climatic change. More effective management of park resources under future hydro-climatic uncertainty requires information on both baseline conditions and the range of projected future conditions. A monthly water balance model was used to assess baseline (1981–1999) conditions and a range of projected future hydro-climatic conditions in 374 NPS parks. General circulation model outputs representing 214 future climate simulations were used to drive the model. Projected future changes in air temperature (T), precipitation (p), and runoff (R) are expressed as departures from historical baselines. Climate simulations indicate increasing T by 2030 for all parks with 50th percentile simulations projecting increases of 1.67 °C or more in 50% of parks. Departures in 2030 p indicate a mix of mostly increases and some decreases, with 50th percentile simulations projecting increases in p in more than 70% of parks. Departures in R for 2030 are mostly decreases, with the 50th percentile simulations projecting decreases in R in more than 50% of parks in all seasons except winter. Hence, in many NPS parks, R is projected to decrease even when p is projected to increase because of increasing T in all parks. Projected changes in future hydro-climatic conditions can also be assessed for individual parks, and Rocky Mountain National Park and Congaree National Park are used as examples.


2012 ◽  
Vol 15 (3) ◽  
pp. 1002-1021 ◽  
Author(s):  
Azadeh Ahmadi ◽  
Dawei Han

Downscaling methods are utilized to assess the effects of large scale atmospheric circulation on local hydrological variables such as precipitation and runoff. In this paper, a methodology of statistical downscaling using a support vector machine (SVM) approach is presented to simulate and predict the precipitation using general circulation model (GCM) data. Due to the complexity and issues related to finding a relationship between the large scale climatic parameters and local precipitation, the climate variables (predictors) affecting monthly precipitation variations over Wales are identified using a combination of the methods including the principal component analysis (PCA), fuzzy clustering, backward selection, forward selection, and Gamma test (GT). The effectiveness of those tools is illustrated through their implementations in the case study. It has been found that although the GT itself fails to identify the best input variable combination, it provides useful and narrowed-down options for further exploration. The best input variable combination is achieved by the GT and forward selection method. This approach can be a useful way for assessing the impacts of climate variables on precipitation forecasting.


2011 ◽  
Vol 3 (4) ◽  
pp. 281-292 ◽  
Author(s):  
Scott Greene ◽  
Laurence S. Kalkstein ◽  
David M. Mills ◽  
Jason Samenow

Abstract This study examines the impact of a changing climate on heat-related mortality in 40 large cities in the United States. A synoptic climatological procedure, the spatial synoptic classification, is used to evaluate present climate–mortality relationships and project how potential climate changes might affect these values. Specifically, the synoptic classification is combined with downscaled future climate projections for the decadal periods of 2020–29, 2045–55, and 2090–99 from a coupled atmospheric–oceanic general circulation model. The results show an increase in excessive heat event (EHE) days and increased heat-attributable mortality across the study cities with the most pronounced increases projected to occur in the Southeast and Northeast. This increase becomes more dramatic toward the end of the twenty-first century as the anticipated impact of climate change intensifies. The health impact associated with different emissions scenarios is also examined. These results suggest that a “business as usual” approach to greenhouse gas emissions mitigation could result in twice as many heat-related deaths by the end of the century than a lower emissions scenario. Finally, a comparison of future estimates of heat-related mortality during EHEs is presented using algorithms developed during two different, although overlapping, time periods, one that includes some recent large-scale significant EHE intervention strategies (1975–2004), and one without (1975–95). The results suggest these public health responses can significantly decrease heat-related mortality.


2008 ◽  
Vol 12 (2) ◽  
pp. 551-563 ◽  
Author(s):  
E. P. Maurer ◽  
H. G. Hidalgo

Abstract. Downscaling of climate model data is essential to local and regional impact analysis. We compare two methods of statistical downscaling to produce continuous, gridded time series of precipitation and surface air temperature at a 1/8-degree (approximately 140 km2 per grid cell) resolution over the western U.S. We use NCEP/NCAR Reanalysis data from 1950–1999 as a surrogate General Circulation Model (GCM). The two methods included are constructed analogues (CA) and a bias correction and spatial downscaling (BCSD), both of which have been shown to be skillful in different settings, and BCSD has been used extensively in hydrologic impact analysis. Both methods use the coarse scale Reanalysis fields of precipitation and temperature as predictors of the corresponding fine scale fields. CA downscales daily large-scale data directly and BCSD downscales monthly data, with a random resampling technique to generate daily values. The methods produce generally comparable skill in producing downscaled, gridded fields of precipitation and temperatures at a monthly and seasonal level. For daily precipitation, both methods exhibit limited skill in reproducing both observed wet and dry extremes and the difference between the methods is not significant, reflecting the general low skill in daily precipitation variability in the reanalysis data. For low temperature extremes, the CA method produces greater downscaling skill than BCSD for fall and winter seasons. For high temperature extremes, CA demonstrates higher skill than BCSD in summer. We find that the choice of most appropriate downscaling technique depends on the variables, seasons, and regions of interest, on the availability of daily data, and whether the day to day correspondence of weather from the GCM needs to be reproduced for some applications. The ability to produce skillful downscaled daily data depends primarily on the ability of the climate model to show daily skill.


2009 ◽  
Vol 22 (10) ◽  
pp. 2571-2590 ◽  
Author(s):  
Hailan Wang ◽  
Siegfried Schubert ◽  
Max Suarez ◽  
Junye Chen ◽  
Martin Hoerling ◽  
...  

Abstract The observed climate trends over the United States during 1950–2000 exhibit distinct seasonality and regionality. The surface air temperature exhibits a warming trend during winter, spring, and early summer and a modest countrywide cooling trend in late summer and fall, with the strongest warming occurring over the northern United States in spring. Precipitation trends are positive in all seasons, with the largest trend occurring over the central and southern United States in fall. This study investigates the causes of the seasonality and regionality of those trends, with a focus on the cooling and wetting trends in the central United States during late summer and fall. In particular, the authors examine the link between the seasonality and regionality of the climate trends over the United States and the leading patterns of sea surface temperature (SST) variability, including a global warming (GW) pattern and a Pacific decadal variability (PDV) pattern. A series of idealized atmospheric general circulation model (AGCM) experiments were performed forced by SST trends associated with these leading SST patterns, as well as the residual trend pattern (obtained by removing the GW and PDV contributions). The results show that the observed seasonal and spatial variations of the climate trends over the United States are to a large extent explained by changes in SST. Among the leading patterns of SST variability, the PDV pattern plays a prominent role in producing both the seasonality and regionality of the climate trends over the United States. In particular, it is the main contributor to the apparent cooling and wetting trends over the central United States. The residual SST trend, a manifestation of phase changes of the Atlantic multidecadal SST variation during 1950–2000, also exerts influences that show strong seasonality with important contributions to the central U.S. temperature and precipitation during the summer and fall seasons. In contrast, the response over the United States to the GW SST pattern is an overall warming with little seasonality or regional variation. These results highlight the important contributions of decadal and multidecadal variability in the Pacific and Atlantic in explaining the observed seasonality and regionality of the climate trends over the United States during the period of 1950–2000.


Sign in / Sign up

Export Citation Format

Share Document