scholarly journals Snow distribution over the Namco lake area of the Tibetan Plateau

2009 ◽  
Vol 13 (11) ◽  
pp. 2023-2030 ◽  
Author(s):  
M. Li ◽  
Y. Ma ◽  
Z. Hu ◽  
H. Ishikawa ◽  
Y. Oku

Abstract. The mesoscale snow distribution over the Namco lake area of the Tibetan Plateau on October 2005 has been investigated in this paper. The base and revised experiments were conducted using the Weather Research Model (WRF) with three nested grids that included a 1 km finest grid centered on the Namco station. Our simulation ran from 6 October through to 10 October 2005, which was concurrent with long term meteorological observations. Evaluation against boundary layer meteorological tower measurements and flux observations showed that the model captured the observed 2 m temperature and 10 m winds reasonably well in the revised experiment. The results suggest that output snow depth maximum amounts from two simulated experiments were centered downwind of the Namco lakeshore. Modified surface state variable, for example, surface skin temperature on the lake help to increase simulated credibility.

2009 ◽  
Vol 6 (1) ◽  
pp. 843-857 ◽  
Author(s):  
M. Li ◽  
Y. Ma ◽  
Z. Hu ◽  
H. Ishikawa ◽  
Y. Oku

Abstract. The mesoscale snow distribution over the Namco lake area of the Tibetan Plateau on October 2005 has been investigated in this paper. The control and sensitive experiments were conducted using Weather Research Model (WRF) with three nested grids that included a 1 km finest grid centered on the Namco station. Our simulation ran from 6 October through 10 October 2005, which was concurrent with long term meteorological observations. Evaluation against boundary layer meteorological tower measurements and flux observations showed that the model captured the observed 2 m temperature and 10 m winds reasonably well in the sensitive experiment. The results suggested that output snow depth maximum amounts from two simulated experiments were centered downwind shore of Namco lake. Modified surface parameters for example surface skin temperature on the lake help to increase simulated credibility.


Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1962
Author(s):  
Zhilong Zhao ◽  
Yue Zhang ◽  
Zengzeng Hu ◽  
Xuanhua Nie

The alpine lakes on the Tibetan Plateau (TP) are indicators of climate change. The assessment of lake dynamics on the TP is an important component of global climate change research. With a focus on lakes in the 33° N zone of the central TP, this study investigates the temporal evolution patterns of the lake areas of different types of lakes, i.e., non-glacier-fed endorheic lakes and non-glacier-fed exorheic lakes, during 1988–2017, and examines their relationship with changes in climatic factors. From 1988 to 2017, two endorheic lakes (Lake Yagenco and Lake Zhamcomaqiong) in the study area expanded significantly, i.e., by more than 50%. Over the same period, two exorheic lakes within the study area also exhibited spatio-temporal variability: Lake Gaeencuonama increased by 5.48%, and the change in Lake Zhamuco was not significant. The 2000s was a period of rapid expansion of both the closed lakes (endorheic lakes) and open lakes (exorheic lakes) in the study area. However, the endorheic lakes maintained the increase in lake area after the period of rapid expansion, while the exorheic lakes decreased after significant expansion. During 1988–2017, the annual mean temperature significantly increased at a rate of 0.04 °C/a, while the annual precipitation slightly increased at a rate of 2.23 mm/a. Furthermore, the annual precipitation significantly increased at a rate of 14.28 mm/a during 1995–2008. The results of this study demonstrate that the change in precipitation was responsible for the observed changes in the lake areas of the two exorheic lakes within the study area, while the changes in the lake areas of the two endorheic lakes were more sensitive to the annual mean temperature between 1988 and 2017. Given the importance of lakes to the TP, these are not trivial issues, and we now need accelerated research based on long-term and continuous remote sensing data.


Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 505
Author(s):  
Yonglan Tang ◽  
Guirong Xu ◽  
Rong Wan ◽  
Xiaofang Wang ◽  
Junchao Wang ◽  
...  

It is an important to study atmospheric thermal and dynamic vertical structures over the Tibetan Plateau (TP) and their impact on precipitation by using long-term observation at representative stations. This study exhibits the observational facts of summer precipitation variation on subdiurnal scale and its atmospheric thermal and dynamic vertical structures over the TP with hourly precipitation and intensive soundings in Jiulong during 2013–2020. It is found that precipitation amount and frequency are low in the daytime and high in the nighttime, and hourly precipitation greater than 1 mm mostly occurs at nighttime. Weak precipitation during the daytime may be caused by air advection, and strong precipitation at nighttime may be closely related with air convection. Both humidity and wind speed profiles show obvious fluctuation when precipitation occurs, and the greater the precipitation intensity, the larger the fluctuation. Moreover, the fluctuation of wind speed is small in the morning, large at noon and largest at night, presenting a similar diurnal cycle to that of convective activity over the TP, which is conductive to nighttime precipitation. Additionally, the inverse layer is accompanied by the inverse humidity layer, and wind speed presents multi-peaks distribution in its vertical structure. Both of these are closely related with the underlying surface and topography of Jiulong. More studies on physical mechanism and numerical simulation are necessary for better understanding the atmospheric phenomenon over the TP.


2020 ◽  
Author(s):  
Hongru Yan ◽  
Jianping Huang ◽  
Yongli He ◽  
Yuzhi Liu ◽  
Tianhe Wang ◽  
...  

2020 ◽  
Author(s):  
Mark Allen ◽  
Robert Law

<p><strong>Evolution of the Tibetan Plateau is important for understanding continental tectonics because of its exceptional elevation (~5 km above sea level) and crustal thickness (~70 km). Patterns of long-term landscape evolution can constrain tectonic processes, but have been hard to quantify, in contrast to established datasets for strain, exhumation and paleo-elevation. This study analyses the relief of the bases and tops of 17 Cenozoic lava fields on the central and northern Tibetan Plateau. Analyzed fields have typical lateral dimensions of 10s of km, and so have an appropriate scale for interpreting tectonic geomorphology. Fourteen of the fields have not been deformed since eruption. One field is cut by normal faults; two others are gently folded with limb dips <6<sup>o</sup></strong><strong>. </strong><strong>Relief of the bases and tops of the fields is comparable to modern, internally-drained, parts of the plateau, and distinctly lower than externally-drained regions. The lavas preserve a record of underlying low relief bedrock landscapes at the time they were erupted, which have undergone little change since. There is an overlap in each area between younger published low-temperature thermochronology ages and the oldest eruption in each area, here interpreted as the transition </strong><strong>between the end of significant (>3 km) exhumation and plateau landscape development. </strong><strong>This diachronous process took place between ~32.5<sup>o</sup> - ~36.5<sup>o</sup> N between ~40 and ~10 Ma, advancing northwards at a long-term rate of ~15 km/Myr. Results are consistent with incremental northwards growth of the plateau, rather than a stepwise evolution or synchronous uplift.</strong></p>


2016 ◽  
Author(s):  
Jiao Ren ◽  
Xiaoping Wang ◽  
Chuanfei Wang ◽  
Ping Gong ◽  
Tandong Yao

Abstract. Atmospheric processes (air-surface exchange, and atmospheric deposition and degradation) are crucial for understanding the global cycling and fate of persistent organic pollutants (POPs). However, such assessment over the Tibetan Plateau (TP) remains uncertain. More than 50 % of the Chinese lakes are located on the TP, which exerts a remarkable influence on the regional water, energy, and chemical cycling. In this study, air and water samples were simultaneously collected in Nam Co, a large lake on the TP, to test whether the lake is a "secondary source" or "sink" of POPs. Lower concentrations of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) were observed in the atmosphere and lake water of Nam Co, while the levels of polycyclic aromatic hydrocarbons (PAHs) were relatively higher. Results of fugacity ratios and chiral signatures both suggest that the lake acted as the net sink of atmospheric hexachlorocyclohexanes (HCHs), following their long-range transport driven by the Indian Monsoon. Different behaviors were observed in the PAHs, which primarily originated from local biomass burning. Acenaphthylene, acenaphthene, and fluorene showed volatilization from the lake to the atmosphere; while other PAHs were deposited into the lake due to the integrated deposition process (wet/dry and air-water gas deposition) and limited atmospheric degradation. As the dominant PAH compound, phenanthrene exhibited a seasonal reversal of air-water gas exchange, which was likely related to the melting of the lake ice in May. The annual input of HCHs from air to the entire lake area (2015 km2) was estimated as 1.9 kg year−1, while those estimated for PAHs can potentially reach up to 550 kg year−1. This study highlights the significance of PAH deposition on the regional carbon cycling in the oligotrophic lakes of the TP.


2010 ◽  
Vol 14 (3) ◽  
pp. 481-489 ◽  
Author(s):  
J. Liu ◽  
S. Kang ◽  
T. Gong ◽  
A. Lu

Abstract. This study analyzed satellite images and long term climate variables from a high-elevation meteorological station (4730 m) and streamflow records to examine hydrological response of Nam Co Lake (4718 m), the largest lake on the Tibetan Plateau, over the last 50 years. The results show the lake area extended by 51.8 km2 (2.7% of the total area) when compared with the area in 1976. This change is associated with an annual precipitation increase of 65 mm (18.6%), annual and winter mean temperature increases of 0.9 °C and 2.1 °C respectively, an annual runoff increase of 20% and an annual pan evaporation decrease of about 2%, during the past 20 years. The year of the change point in annual precipitation, air temperature, annual pan evaporation and runoff occurred in 1971, 1983, 1997 and 1997, respectively. The timing of the lake growth corresponds with the abrupt increase in annual precipitation and runoff since the mid-1990s.


2016 ◽  
Vol 8 (2) ◽  
pp. 466-477 ◽  
Author(s):  
Hang Yin ◽  
Chunxiang Cao ◽  
Min Xu ◽  
Wei Chen ◽  
Xiliang Ni ◽  
...  

Science ◽  
2020 ◽  
Vol 370 (6516) ◽  
pp. 584-587
Author(s):  
Dongju Zhang ◽  
Huan Xia ◽  
Fahu Chen ◽  
Bo Li ◽  
Viviane Slon ◽  
...  

A late Middle Pleistocene mandible from Baishiya Karst Cave (BKC) on the Tibetan Plateau has been inferred to be from a Denisovan, an Asian hominin related to Neanderthals, on the basis of an amino acid substitution in its collagen. Here we describe the stratigraphy, chronology, and mitochondrial DNA extracted from the sediments in BKC. We recover Denisovan mitochondrial DNA from sediments deposited ~100 thousand and ~60 thousand years ago (ka) and possibly as recently as ~45 ka. The long-term occupation of BKC by Denisovans suggests that they may have adapted to life at high altitudes and may have contributed such adaptations to modern humans on the Tibetan Plateau.


Sign in / Sign up

Export Citation Format

Share Document