scholarly journals Spectral representation of the annual cycle in the climate change signal

2011 ◽  
Vol 15 (9) ◽  
pp. 2777-2788 ◽  
Author(s):  
T. Bosshard ◽  
S. Kotlarski ◽  
T. Ewen ◽  
C. Schär

Abstract. The annual cycle of temperature and precipitation changes as projected by climate models is of fundamental interest in climate impact studies. Its estimation, however, is impaired by natural variability. Using a simple form of the delta change method, we show that on regional scales relevant for hydrological impact models, the projected changes in the annual cycle are prone to sampling artefacts. For precipitation at station locations, these artefacts may have amplitudes that are comparable to the climate change signal itself. Therefore, the annual cycle of the climate change signal should be filtered when generating climate change scenarios. We test a spectral smoothing method to remove the artificial fluctuations. Comparison against moving monthly averages shows that sampling artefacts in the climate change signal can successfully be removed by spectral smoothing. The method is tested at Swiss climate stations and applied to regional climate model output of the ENSEMBLES project. The spectral method performs well, except in cases with a strong annual cycle and large relative precipitation changes.

2011 ◽  
Vol 8 (1) ◽  
pp. 1161-1192 ◽  
Author(s):  
T. Bosshard ◽  
S. Kotlarski ◽  
T. Ewen ◽  
C. Schär

Abstract. The annual cycle of temperature and precipitation changes as projected by climate models is of fundamental interest in climate impact studies. Its estimation, however, is impaired by natural variability. Using a simple form of the delta change method, we show that on regional scales relevant for hydrological impact models, the projected changes in the annual cycle are prone to sampling artefacts. For precipitation at station locations, these artefacts may have amplitudes that are comparable to the climate change signal itself. Therefore, the annual cycle of the climate change signal should be filtered when generating climate change scenarios. We test a spectral smoothing method to remove the artificial fluctuations. Comparison against moving monthly averages shows that sampling artefacts in the climate change signal can successfully be removed by spectral smoothing. The method is tested at Swiss climate stations and applied to regional climate model output of the ENSEMBLES project. The spectral method performs well, except in cases with a strong annual cycle and large relative precipitation changes.


2021 ◽  
Author(s):  
Fabian Lehner ◽  
Imran Nadeem ◽  
Herbert Formayer

Abstract. Daily meteorological data such as temperature or precipitation from climate models is needed for many climate impact studies, e.g. in hydrology or agriculture but direct model output can contain large systematic errors. Thus, statistical bias adjustment is applied to correct climate model outputs. Here we review existing statistical bias adjustment methods and their shortcomings, and present a method which we call EQA (Empirical Quantile Adjustment), a development of the methods EDCDFm and PresRAT. We then test it in comparison to two existing methods using real and artificially created daily temperature and precipitation data for Austria. We compare the performance of the three methods in terms of the following demands: (1): The model data should match the climatological means of the observational data in the historical period. (2): The long-term climatological trends of means (climate change signal), either defined as difference or as ratio, should not be altered during bias adjustment, and (3): Even models with too few wet days (precipitation above 0.1 mm) should be corrected accurately, so that the wet day frequency is conserved. EQA fulfills (1) almost exactly and (2) at least for temperature. For precipitation, an additional correction included in EQA assures that the climate change signal is conserved, and for (3), we apply another additional algorithm to add precipitation days.


2018 ◽  
Vol 31 (16) ◽  
pp. 6591-6610 ◽  
Author(s):  
Martin Aleksandrov Ivanov ◽  
Jürg Luterbacher ◽  
Sven Kotlarski

Climate change impact research and risk assessment require accurate estimates of the climate change signal (CCS). Raw climate model data include systematic biases that affect the CCS of high-impact variables such as daily precipitation and wind speed. This paper presents a novel, general, and extensible analytical theory of the effect of these biases on the CCS of the distribution mean and quantiles. The theory reveals that misrepresented model intensities and probability of nonzero (positive) events have the potential to distort raw model CCS estimates. We test the analytical description in a challenging application of bias correction and downscaling to daily precipitation over alpine terrain, where the output of 15 regional climate models (RCMs) is reduced to local weather stations. The theoretically predicted CCS modification well approximates the modification by the bias correction method, even for the station–RCM combinations with the largest absolute modifications. These results demonstrate that the CCS modification by bias correction is a direct consequence of removing model biases. Therefore, provided that application of intensity-dependent bias correction is scientifically appropriate, the CCS modification should be a desirable effect. The analytical theory can be used as a tool to 1) detect model biases with high potential to distort the CCS and 2) efficiently generate novel, improved CCS datasets. The latter are highly relevant for the development of appropriate climate change adaptation, mitigation, and resilience strategies. Future research needs to focus on developing process-based bias corrections that depend on simulated intensities rather than preserving the raw model CCS.


2019 ◽  
Vol 23 (3) ◽  
pp. 1409-1429 ◽  
Author(s):  
Sjoukje Philip ◽  
Sarah Sparrow ◽  
Sarah F. Kew ◽  
Karin van der Wiel ◽  
Niko Wanders ◽  
...  

Abstract. In August 2017 Bangladesh faced one of its worst river flooding events in recent history. This paper presents, for the first time, an attribution of this precipitation-induced flooding to anthropogenic climate change from a combined meteorological and hydrological perspective. Experiments were conducted with three observational datasets and two climate models to estimate changes in the extreme 10-day precipitation event frequency over the Brahmaputra basin up to the present and, additionally, an outlook to 2 ∘C warming since pre-industrial times. The precipitation fields were then used as meteorological input for four different hydrological models to estimate the corresponding changes in river discharge, allowing for comparison between approaches and for the robustness of the attribution results to be assessed. In all three observational precipitation datasets the climate change trends for extreme precipitation similar to that observed in August 2017 are not significant, however in two out of three series, the sign of this insignificant trend is positive. One climate model ensemble shows a significant positive influence of anthropogenic climate change, whereas the other large ensemble model simulates a cancellation between the increase due to greenhouse gases (GHGs) and a decrease due to sulfate aerosols. Considering discharge rather than precipitation, the hydrological models show that attribution of the change in discharge towards higher values is somewhat less uncertain than in precipitation, but the 95 % confidence intervals still encompass no change in risk. Extending the analysis to the future, all models project an increase in probability of extreme events at 2 ∘C global heating since pre-industrial times, becoming more than 1.7 times more likely for high 10-day precipitation and being more likely by a factor of about 1.5 for discharge. Our best estimate on the trend in flooding events similar to the Brahmaputra event of August 2017 is derived by synthesizing the observational and model results: we find the change in risk to be greater than 1 and of a similar order of magnitude (between 1 and 2) for both the meteorological and hydrological approach. This study shows that, for precipitation-induced flooding events, investigating changes in precipitation is useful, either as an alternative when hydrological models are not available or as an additional measure to confirm qualitative conclusions. Besides this, it highlights the importance of using multiple models in attribution studies, particularly where the climate change signal is not strong relative to natural variability or is confounded by other factors such as aerosols.


2019 ◽  
Vol 58 (5) ◽  
pp. 1061-1078 ◽  
Author(s):  
Abdelkader Mezghani ◽  
Andreas Dobler ◽  
Rasmus Benestad ◽  
Jan Erik Haugen ◽  
Kajsa M. Parding ◽  
...  

ABSTRACTMost impact studies using downscaled climate data as input assume that the selection of few global climate models (GCMs) representing the largest spread covers the likely range of future changes. This study shows that including more GCMs can result in a very different behavior. We tested the influence of selecting various subsets of GCMs on the climate change signal over Poland from simulations based on dynamical and empirical–statistical downscaling methods. When the climate variable is well simulated by the GCM, such as temperature, results showed that both downscaling methods agree on a warming over Poland by up to 2° or 5°C assuming intermediate or high emission scenarios, respectively, by 2071–2100. As a less robust simulated signal through GCMs, precipitation is expected to increase by up to 10% by 2071–2100 assuming the intermediate emission scenario. However, these changes are uncertain when the high emission scenario and the end of the twenty-first century are of interest. Further, an additional bootstrap test revealed an underestimation in the warming rate varying from 0.5° to more than 4°C over Poland that was found to be largely influenced by the selection of few driving GCMs instead of considering the full range of possible climate model outlooks. Furthermore, we found that differences between various combinations of small subsets from the GCM ensemble of opportunities can be as large as the climate change signal.


2005 ◽  
Vol 18 (17) ◽  
pp. 3536-3551 ◽  
Author(s):  
Bart van den Hurk ◽  
Martin Hirschi ◽  
Christoph Schär ◽  
Geert Lenderink ◽  
Erik van Meijgaard ◽  
...  

Abstract Simulations with seven regional climate models driven by a common control climate simulation of a GCM carried out for Europe in the context of the (European Union) EU-funded Prediction of Regional scenarios and Uncertainties for Defining European Climate change risks and Effects (PRUDENCE) project were analyzed with respect to land surface hydrology in the Rhine basin. In particular, the annual cycle of the terrestrial water storage was compared to analyses based on the 40-yr ECMWF Re-Analysis (ERA-40) atmospheric convergence and observed Rhine discharge data. In addition, an analysis was made of the partitioning of convergence anomalies over anomalies in runoff and storage. This analysis revealed that most models underestimate the size of the water storage and consequently overestimated the response of runoff to anomalies in net convergence. The partitioning of these anomalies over runoff and storage was indicative for the response of the simulated runoff to a projected climate change consistent with the greenhouse gas A2 Synthesis Report on Emission Scenarios (SRES). In particular, the annual cycle of runoff is affected largely by the terrestrial storage reservoir. Larger storage capacity leads to smaller changes in both wintertime and summertime monthly mean runoff. The sustained summertime evaporation resulting from larger storage reservoirs may have a noticeable impact on the summertime surface temperature projections.


2015 ◽  
Vol 12 (3) ◽  
pp. 3011-3028 ◽  
Author(s):  
D. Maraun ◽  
M. Widmann

Abstract. To assess potential impacts of climate change for a specific location, one typically employs climate model simulations at the grid box corresponding to the same geographical location. But based on regional climate model simulations, we show that simulated climate might be systematically displaced compared to observations. In particular in the rain shadow of moutain ranges, a local grid box is therefore often not representative of observed climate: the simulated windward weather does not flow far enough across the mountains; local grid boxes experience the wrong airmasses and atmospheric circulation. In some cases, also the local climate change signal is deteriorated. Classical bias correction methods fail to correct these location errors. Often, however, a distant simulated time series is representative of the considered observed precipitation, such that a non-local bias correction is possible. These findings also clarify limitations of bias correcting global model errors, and of bias correction against station data.


2018 ◽  
Author(s):  
Sjoukje Philip ◽  
Sarah Sparrow ◽  
Sarah F. Kew ◽  
Karin van der Wiel ◽  
Niko Wanders ◽  
...  

Abstract. In August 2017 Bangladesh faced one of its worst river flooding events in recent history. This paper presents for the first time an attribution of this precipitation-induced flooding from a combined meteorological and hydrological perspective. Experiments were conducted with three observational data sets and two climate models to estimate changes in extreme 10-day precipitation event frequency over the Brahmaputra basin. The precipitation fields were then used as meteorological input for four different hydrological models to estimate the corresponding changes in river discharge, allowing for comparison between approaches and for the robustness of the attribution results to be assessed. In all three observational precipitation data sets the climate change trends for extreme precipitation similar to observed in August 2017 are not significant, however in two out of three series, the sign of this insignificant trend is positive. One climate model shows a significant positive influence of anthropogenic climate change, whereas the other simulates a cancellation between the increase due to greenhouse gases and a decrease due to sulphate aerosols. Considering discharge rather than precipitation, the hydrological models show that attribution of the change in discharge towards higher values is somewhat less uncertain than for precipitation, but the 95 % confidence interval still encompasses no change in risk. For the future, all models project an increase in probability of extreme events at 2 °C global heating since pre-industrial times, becoming more than 1.7 times more likely for high 10-day precipitation, and about a factor 1.5 more likely for discharge. Our best estimate on the trend in flooding events similar to the Brahmaputra event of August 2017 is derived by synthesizing the observational and model results: We find the change in risk to be greater than one and of similar order of magnitude (between 1 and 2) for both the meteorological and hydrological approach. This study shows that, for precipitation-induced flooding events, investigating changes in precipitation is useful, either as an alternative when hydrological models are not available, or as an additional measure to confirm qualitative conclusions. Besides, it highlights the importance of using multiple models in attribution studies, particularly where the climate change signal is not strong relative to natural variability or is confounded by other factors such as aerosols.


2017 ◽  
Author(s):  
Noora Veijalainen ◽  
Juho Jakkila ◽  
Taru Olsson ◽  
Leif Backman ◽  
Bertel Vehviläinen ◽  
...  

Abstract. Bias correction of precipitation and temperature of five Regional Climate Models (RCMs) was carried out using Distribution Based Scaling (DBS) method with two versions for precipitation adjustment: single gamma and double gamma. This data were then used as input for a hydrological model to simulate changes in floods by the end of this century, and the results were compared to corresponding changes simulated using delta change approach. The results show that while the DBS adjustment significantly improves the RCM precipitations and temperatures compared to observations, especially the double gamma distribution does not always preserve trends of the uncorrected RCM data. The simulation of floods in the control period is improved by the DBS adjustment with no significant differences between single and double gamma. However, some scenarios are still unable to match the observed hydrology adequately due to remaining biases especially in near zero winter temperatures. These scenarios may produce an unrealistic climate change signal and should therefore be discarded from further use. A simple criterion for evaluating the adequate performance of the RCMs and hydrological models compared to observed floods is presented. The results of climate change simulations show that extreme summer precipitations increase more than average values in Finland. The changes in floods by 2070–2099 vary in different regions depending on season and the main flood producing mechanism (snowmelt or heavy rain). The changes in floods simulated with the DBS adjusted RCM data are mostly similar as with delta change approach, but the DBS method produces larger range of changes.


2012 ◽  
Vol 5 (4) ◽  
pp. 3533-3572 ◽  
Author(s):  
J. Heinke ◽  
S. Ostberg ◽  
S. Schaphoff ◽  
K. Frieler ◽  
C. Müller ◽  
...  

Abstract. In the ongoing political debate on climate change, global mean temperature change (ΔTglob) has become the yardstick by which mitigation costs, impacts from unavoided climate change, and adaptation requirements are discussed. For a scientifically informed discourse along these lines systematic assessments of climate change impacts as a function of ΔTglob are required. The current availability of climate change scenarios constrains this type of assessment to a narrow range of temperature change and/or a reduced ensemble of climate models. Here, a newly composed dataset of climate change scenarios is presented that addresses the specific requirements for global assessments of climate change impacts as a function of ΔTglob. A pattern-scaling approach is applied to extract generalized patterns of spatially explicit change in temperature, precipitation and cloudiness from 19 AOGCMs. The patterns are combined with scenarios of global mean temperature increase obtained from the reduced-complexity climate model MAGICC6 to create climate scenarios covering warming levels from 1.5 to 5 degrees above pre-industrial levels around the year 2100. The patterns are shown to sufficiently maintain the original AOGCMs' climate change properties, even though they, necessarily, utilize a simplified relationships between ΔTglob and changes in local climate properties. The dataset (made available online upon final publication of this paper) facilitates systematic analyses of climate change impacts as it covers a wider and finer-spaced range of climate change scenarios than the original AOGCM simulations.


Sign in / Sign up

Export Citation Format

Share Document