Subsampling Impact on the Climate Change Signal over Poland Based on Simulations from Statistical and Dynamical Downscaling

2019 ◽  
Vol 58 (5) ◽  
pp. 1061-1078 ◽  
Author(s):  
Abdelkader Mezghani ◽  
Andreas Dobler ◽  
Rasmus Benestad ◽  
Jan Erik Haugen ◽  
Kajsa M. Parding ◽  
...  

ABSTRACTMost impact studies using downscaled climate data as input assume that the selection of few global climate models (GCMs) representing the largest spread covers the likely range of future changes. This study shows that including more GCMs can result in a very different behavior. We tested the influence of selecting various subsets of GCMs on the climate change signal over Poland from simulations based on dynamical and empirical–statistical downscaling methods. When the climate variable is well simulated by the GCM, such as temperature, results showed that both downscaling methods agree on a warming over Poland by up to 2° or 5°C assuming intermediate or high emission scenarios, respectively, by 2071–2100. As a less robust simulated signal through GCMs, precipitation is expected to increase by up to 10% by 2071–2100 assuming the intermediate emission scenario. However, these changes are uncertain when the high emission scenario and the end of the twenty-first century are of interest. Further, an additional bootstrap test revealed an underestimation in the warming rate varying from 0.5° to more than 4°C over Poland that was found to be largely influenced by the selection of few driving GCMs instead of considering the full range of possible climate model outlooks. Furthermore, we found that differences between various combinations of small subsets from the GCM ensemble of opportunities can be as large as the climate change signal.

2020 ◽  
Vol 162 (2) ◽  
pp. 645-665
Author(s):  
Melissa S. Bukovsky ◽  
Linda O. Mearns

Abstract The climate sensitivity of global climate models (GCMs) strongly influences projected climate change due to increased atmospheric carbon dioxide. Reasonably, the climate sensitivity of a GCM may be expected to affect dynamically downscaled projections. However, there has been little examination of the effect of the climate sensitivity of GCMs on regional climate model (RCM) ensembles. Therefore, we present projections of temperature and precipitation from the ensemble of projections produced as a part of the North American branch of the international Coordinated Regional Downscaling Experiment (NA-CORDEX) in the context of their relationship to the climate sensitivity of their parent GCMs. NA-CORDEX simulations were produced at 50-km and 25-km resolutions with multiple RCMs which downscaled multiple GCMs that spanned nearly the full range of climate sensitivity available in the CMIP5 archive. We show that climate sensitivity is a very important source of spread in the NA-CORDEX ensemble, particularly for temperature. Temperature projections correlate with driving GCM climate sensitivity annually and seasonally across North America not only at a continental scale but also at a local-to-regional scale. Importantly, the spread in temperature projections would be reduced if only low, mid, or high climate sensitivity simulations were considered, or if only the ensemble mean were considered. Precipitation projections correlate with climate sensitivity, but only at a continental scale during the cold season, due to the increasing influence of other processes at finer scales. Additionally, it is shown that the RCMs do alter the projection space sampled by their driving GCMs.


2018 ◽  
Vol 15 ◽  
pp. 217-230
Author(s):  
María Pilar Amblar-Francés ◽  
María Asunción Pastor-Saavedra ◽  
María Jesús Casado-Calle ◽  
Petra Ramos-Calzado ◽  
Ernesto Rodríguez-Camino

Abstract. Over the past decades, the successive Coupled Model Intercomparison Projects (CMIPs) have produced a huge amount of global climate model simulations. Along these years, the climate models have advanced and can thus provide credible evolution of climate at least at continental or global scales since they are better representing physical processes and feedbacks in the climate system. Nevertheless, due to the coarse horizontal resolution of global climate models, it is necessary to downscale these results for their use to assess possible future impacts of climate change in climate sensitive ecosystems and sectors and to adopt adaptation strategies at local and national level. In this vein, the Spanish State Meteorological Agency (AEMET) has been producing since 2006 a set of reference downscaled climate change projections over Spain either applying statistical downscaling techniques to the outputs of the Global Climate Models (GCMs) or making use of the information generated by dynamical downscaling techniques through European projects or international initiatives such as PRUDENCE, ENSEMBLES and EURO-CORDEX. The AEMET strategy aims at exploiting all the available sources of information on climate change projections. The generalized use of statistical and dynamical downscaling approaches allow us to encompass a great number of global models and therefore to provide a better estimation of uncertainty. Most impact climate change studies over Spain make use of this reference downscaled projections emphasizing the estimation of uncertainties. Additionally to the rationale and history behind the AEMET generation of climate change scenarios, we focus on some preliminary analysis of the dependency of estimated uncertainties on the different sources of data.


2021 ◽  
Author(s):  
Yuan Qiu ◽  
Jinming Feng ◽  
Zhongwei Yan ◽  
Jun Wang

Abstract Central Asia (CA) is among the most vulnerable regions to climate change due to the fragile ecosystems, frequent natural hazards, strained water resources, and accelerated glacier melting, which underscores the need to achieve robust projection of regional climate change. In this study, we applied three bias-corrected global climate models (GCMs) to conduct 9km-resolution regional climate simulations in CA for the present (1986–2005) and future (2031–2050) periods. Dynamical downscaling based on multiple bias-corrected GCM outputs obtains numerous added values not only in reproducing the historical climate but also in projecting the climate changes in CA, in comparison to the original GCMs. The regional climate model (RCM) simulations indicate significant warming over CA in the near-term future, with the regional mean increase of annual daily mean temperature (Tmean) in a range of 1.63–2.01℃, relative to the present period. This increase is expected to be higher north of ~ 45°N in each season except summer and the high-elevation areas have a weaker warming signal than the plains through the year. The season with the largest warming rate is not consistent among the RCM simulations, highlighting the necessity of using multiple GCMs as the boundary conditions to give a range of the projected climate changes. A slight increase in annual precipitation is consistently projected in most plain areas, although the changes over few areas are statistically significant. The climate projections presented here serve as a robust scientific basis for assessment of future risk from climate change in CA.


2021 ◽  
pp. 1-52
Author(s):  
Yi Jin ◽  
Xuebin Zhang ◽  
John A. Church ◽  
Xianwen Bao

AbstractProjections of future sea-level changes are usually based on global climate models (GCMs). However, the changes in shallow coastal regions, like the marginal seas near China, cannot be fully resolved in GCMs. To improve regional sea-level simulations, a high-resolution (~8 km) regional ocean model is set up for the marginal seas near China for both the historical (1994-2015) and future (2079-2100) periods under representative concentration pathways (RCPs) 4.5 and 8.5. The historical ocean simulations are evaluated at different spatiotemporal scales, and the model is then integrated for the future period, driven by projected monthly climatological climate change signals from 8 GCMs individually via both surface and open boundary conditions. The downscaled ocean changes derived by comparing historical and future experiments reveal greater spatial details than those from GCMs, e.g., a low dynamic sea level (DSL) centre of -0.15 m in the middle of the South China Sea (SCS). As a novel test, the downscaled results driven by the ensemble mean forcings are almost identical with the ensemble average results from individually downscaled cases. Forcing of the DSL change and increased cyclonic circulation in the SCS are dominated by the climate change signals from the Pacific, while the DSL change in the East China marginal seas is caused by both local atmosphere forcing and signals from the Pacific. The method of downscaling developed in this study is a useful modelling protocol for adaptation and mitigation planning for future oceanic climate changes.


2021 ◽  
Author(s):  
Fabian Lehner ◽  
Imran Nadeem ◽  
Herbert Formayer

Abstract. Daily meteorological data such as temperature or precipitation from climate models is needed for many climate impact studies, e.g. in hydrology or agriculture but direct model output can contain large systematic errors. Thus, statistical bias adjustment is applied to correct climate model outputs. Here we review existing statistical bias adjustment methods and their shortcomings, and present a method which we call EQA (Empirical Quantile Adjustment), a development of the methods EDCDFm and PresRAT. We then test it in comparison to two existing methods using real and artificially created daily temperature and precipitation data for Austria. We compare the performance of the three methods in terms of the following demands: (1): The model data should match the climatological means of the observational data in the historical period. (2): The long-term climatological trends of means (climate change signal), either defined as difference or as ratio, should not be altered during bias adjustment, and (3): Even models with too few wet days (precipitation above 0.1 mm) should be corrected accurately, so that the wet day frequency is conserved. EQA fulfills (1) almost exactly and (2) at least for temperature. For precipitation, an additional correction included in EQA assures that the climate change signal is conserved, and for (3), we apply another additional algorithm to add precipitation days.


2016 ◽  
Vol 155 (3) ◽  
pp. 407-420 ◽  
Author(s):  
R. S. SILVA ◽  
L. KUMAR ◽  
F. SHABANI ◽  
M. C. PICANÇO

SUMMARYTomato (Solanum lycopersicum L.) is one of the most important vegetable crops globally and an important agricultural sector for generating employment. Open field cultivation of tomatoes exposes the crop to climatic conditions, whereas greenhouse production is protected. Hence, global warming will have a greater impact on open field cultivation of tomatoes rather than the controlled greenhouse environment. Although the scale of potential impacts is uncertain, there are techniques that can be implemented to predict these impacts. Global climate models (GCMs) are useful tools for the analysis of possible impacts on a species. The current study aims to determine the impacts of climate change and the major factors of abiotic stress that limit the open field cultivation of tomatoes in both the present and future, based on predicted global climate change using CLIMatic indEX and the A2 emissions scenario, together with the GCM Commonwealth Scientific and Industrial Research Organisation (CSIRO)-Mk3·0 (CS), for the years 2050 and 2100. The results indicate that large areas that currently have an optimum climate will become climatically marginal or unsuitable for open field cultivation of tomatoes due to progressively increasing heat and dry stress in the future. Conversely, large areas now marginal and unsuitable for open field cultivation of tomatoes will become suitable or optimal due to a decrease in cold stress. The current model may be useful for plant geneticists and horticulturalists who could develop new regional stress-resilient tomato cultivars based on needs related to these modelling projections.


2018 ◽  
Vol 31 (16) ◽  
pp. 6591-6610 ◽  
Author(s):  
Martin Aleksandrov Ivanov ◽  
Jürg Luterbacher ◽  
Sven Kotlarski

Climate change impact research and risk assessment require accurate estimates of the climate change signal (CCS). Raw climate model data include systematic biases that affect the CCS of high-impact variables such as daily precipitation and wind speed. This paper presents a novel, general, and extensible analytical theory of the effect of these biases on the CCS of the distribution mean and quantiles. The theory reveals that misrepresented model intensities and probability of nonzero (positive) events have the potential to distort raw model CCS estimates. We test the analytical description in a challenging application of bias correction and downscaling to daily precipitation over alpine terrain, where the output of 15 regional climate models (RCMs) is reduced to local weather stations. The theoretically predicted CCS modification well approximates the modification by the bias correction method, even for the station–RCM combinations with the largest absolute modifications. These results demonstrate that the CCS modification by bias correction is a direct consequence of removing model biases. Therefore, provided that application of intensity-dependent bias correction is scientifically appropriate, the CCS modification should be a desirable effect. The analytical theory can be used as a tool to 1) detect model biases with high potential to distort the CCS and 2) efficiently generate novel, improved CCS datasets. The latter are highly relevant for the development of appropriate climate change adaptation, mitigation, and resilience strategies. Future research needs to focus on developing process-based bias corrections that depend on simulated intensities rather than preserving the raw model CCS.


2019 ◽  
Vol 23 (3) ◽  
pp. 1409-1429 ◽  
Author(s):  
Sjoukje Philip ◽  
Sarah Sparrow ◽  
Sarah F. Kew ◽  
Karin van der Wiel ◽  
Niko Wanders ◽  
...  

Abstract. In August 2017 Bangladesh faced one of its worst river flooding events in recent history. This paper presents, for the first time, an attribution of this precipitation-induced flooding to anthropogenic climate change from a combined meteorological and hydrological perspective. Experiments were conducted with three observational datasets and two climate models to estimate changes in the extreme 10-day precipitation event frequency over the Brahmaputra basin up to the present and, additionally, an outlook to 2 ∘C warming since pre-industrial times. The precipitation fields were then used as meteorological input for four different hydrological models to estimate the corresponding changes in river discharge, allowing for comparison between approaches and for the robustness of the attribution results to be assessed. In all three observational precipitation datasets the climate change trends for extreme precipitation similar to that observed in August 2017 are not significant, however in two out of three series, the sign of this insignificant trend is positive. One climate model ensemble shows a significant positive influence of anthropogenic climate change, whereas the other large ensemble model simulates a cancellation between the increase due to greenhouse gases (GHGs) and a decrease due to sulfate aerosols. Considering discharge rather than precipitation, the hydrological models show that attribution of the change in discharge towards higher values is somewhat less uncertain than in precipitation, but the 95 % confidence intervals still encompass no change in risk. Extending the analysis to the future, all models project an increase in probability of extreme events at 2 ∘C global heating since pre-industrial times, becoming more than 1.7 times more likely for high 10-day precipitation and being more likely by a factor of about 1.5 for discharge. Our best estimate on the trend in flooding events similar to the Brahmaputra event of August 2017 is derived by synthesizing the observational and model results: we find the change in risk to be greater than 1 and of a similar order of magnitude (between 1 and 2) for both the meteorological and hydrological approach. This study shows that, for precipitation-induced flooding events, investigating changes in precipitation is useful, either as an alternative when hydrological models are not available or as an additional measure to confirm qualitative conclusions. Besides this, it highlights the importance of using multiple models in attribution studies, particularly where the climate change signal is not strong relative to natural variability or is confounded by other factors such as aerosols.


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2130 ◽  
Author(s):  
Zhu ◽  
Zhang ◽  
Wu ◽  
Qi ◽  
Fu ◽  
...  

This paper assesses the uncertainties in the projected future runoff resulting from climate change and downscaling methods in the Biliu River basin (Liaoning province, Northeast China). One widely used hydrological model SWAT, 11 Global Climate Models (GCMs), two statistical downscaling methods, four dynamical downscaling datasets, and two Representative Concentration Pathways (RCP4.5 and RCP8.5) are applied to construct 22 scenarios to project runoff. Hydrology variables in historical and future periods are compared to investigate their variations, and the uncertainties associated with climate change and downscaling methods are also analyzed. The results show that future temperatures will increase under all scenarios and will increase more under RCP8.5 than RCP4.5, while future precipitation will increase under 16 scenarios. Future runoff tends to decrease under 13 out of the 22 scenarios. We also found that the mean runoff changes ranging from −38.38% to 33.98%. Future monthly runoff increases in May, June, September, and October and decreases in all the other months. Different downscaling methods have little impact on the lower envelope of runoff, and they mainly impact the upper envelope of the runoff. The impact of climate change can be regarded as the main source of the runoff uncertainty during the flood period (from May to September), while the impact of downscaling methods can be regarded as the main source during the non-flood season (from October to April). This study separated the uncertainty impact of different factors, and the results could provide very important information for water resource management.


2011 ◽  
Vol 15 (9) ◽  
pp. 2777-2788 ◽  
Author(s):  
T. Bosshard ◽  
S. Kotlarski ◽  
T. Ewen ◽  
C. Schär

Abstract. The annual cycle of temperature and precipitation changes as projected by climate models is of fundamental interest in climate impact studies. Its estimation, however, is impaired by natural variability. Using a simple form of the delta change method, we show that on regional scales relevant for hydrological impact models, the projected changes in the annual cycle are prone to sampling artefacts. For precipitation at station locations, these artefacts may have amplitudes that are comparable to the climate change signal itself. Therefore, the annual cycle of the climate change signal should be filtered when generating climate change scenarios. We test a spectral smoothing method to remove the artificial fluctuations. Comparison against moving monthly averages shows that sampling artefacts in the climate change signal can successfully be removed by spectral smoothing. The method is tested at Swiss climate stations and applied to regional climate model output of the ENSEMBLES project. The spectral method performs well, except in cases with a strong annual cycle and large relative precipitation changes.


Sign in / Sign up

Export Citation Format

Share Document