scholarly journals A regional climate model hindcast for Siberia – assessing the added value of snow water equivalent using ESA GlobSnow and reanalyses

2012 ◽  
Vol 6 (6) ◽  
pp. 4637-4671
Author(s):  
K. Klehmet ◽  
B. Geyer ◽  
B. Rockel

Abstract. This study analyzes the added value of a regional climate model hindcast of CCLM compared to global reanalyses in providing a reconstruction of recent past snow water equivalent (SWE) for Siberia. Consistent regional climate data in time and space is necessary due to lack of station data in that region. We focus on SWE since it represents an important snow cover parameter in a region where snow has the potential to feed back to the climate of the whole Northern Hemisphere. The simulation was performed in a 50 km grid spacing for the period 1948 to 2010 using NCEP Reanalysis 1 as boundary forcing. Daily observational reference data for the period of 1987–2010 was obtained by the satellite derived SWE product of ESA DUE GlobSnow that enables a large scale assessment. The analyses includes comparisons of the distribution of snow cover extent, example time series of monthly SWE for January and April, regional characteristics of long-term monthly mean, standard deviation and temporal correlation averaged over subregions. SWE of CCLM is compared against the SWE information of NCEP-R1 itself and three more reanalyses (NCEP-R2, NCEP-CFSR, ERA-Interim). We demonstrate a significant added value of the CCLM hindcast during snow accumulation period shown for January for many subregions compared to SWE of NCEP-R1. NCEP-R1 mostly underestimates SWE during whole snow season. CCLM overestimates SWE compared to the satellite-derived product during April – a month representing the beginning of snow melt in southern regions. We illustrate that SWE of the regional hindcast is more consistent in time than ERA-Interim and NCEP-R2 and thus add realistic detail.

2013 ◽  
Vol 7 (4) ◽  
pp. 1017-1034 ◽  
Author(s):  
K. Klehmet ◽  
B. Geyer ◽  
B. Rockel

Abstract. This study analyzes the added value of a regional climate model hindcast with respect to snow water equivalent (SWE) for Siberia when compared to SWE estimates from forcing NCEP-R. In addition, we examine the discrepancies of simulated SWE to several recent reanalysis products (NCEP-R2 NCEP-CFSR, ERA-Interim). We apply the regional climate model COSMO-CLM (CCLM) to a 50 km grid spacing using NCEP-R1 as driving force to obtain a 63 yr (1948 to 2010) gridded dataset of historical SWE. Simulated regional climate data is necessary because of the absence of station data in that region. To perform large-scale assessments we use the satellite-derived daily SWE product of ESA DUE GlobSnow from 1987 to 2010. Russian station SWE data is used for cross-checking the findings. In January (mid-winter), the SWE hindcast is in good agreement with GlobSnow, whereas it overestimates SWE during the melting season. CCLM shows a clear added value in providing realistic SWE information compared to the driving reanalysis. The temporal consistency of CCLM is higher than that presented by ERA-Interim and NCEP-R2.


2013 ◽  
Vol 17 (10) ◽  
pp. 3921-3936 ◽  
Author(s):  
M. Ménégoz ◽  
H. Gallée ◽  
H. W. Jacobi

Abstract. We applied a Regional Climate Model (RCM) to simulate precipitation and snow cover over the Himalaya, between March 2000 and December 2002. Due to its higher resolution, our model simulates a more realistic spatial variability of wind and precipitation than those of the reanalysis of the European Centre of Medium range Weather Forecast (ECMWF) used as lateral boundaries. In this region, we found very large discrepancies between the estimations of precipitation provided by reanalysis, rain gauges networks, satellite observations, and our RCM simulation. Our model clearly underestimates precipitation at the foothills of the Himalaya and in its eastern part. However, our simulation provides a first estimation of liquid and solid precipitation in high altitude areas, where satellite and rain gauge networks are not very reliable. During the two years of simulation, our model resembles the snow cover extent and duration quite accurately in these areas. Both snow accumulation and snow cover duration differ widely along the Himalaya: snowfall can occur during the whole year in western Himalaya, due to both summer monsoon and mid-latitude low pressure systems bringing moisture into this region. In Central Himalaya and on the Tibetan Plateau, a much more marked dry season occurs from October to March. Snow cover does not have a pronounced seasonal cycle in these regions, since it depends both on the quite variable duration of the monsoon and on the rare but possible occurrence of snowfall during the extra-monsoon period.


2017 ◽  
Vol 18 (5) ◽  
pp. 1205-1225 ◽  
Author(s):  
Diana Verseghy ◽  
Ross Brown ◽  
Libo Wang

Abstract The Canadian Land Surface Scheme (CLASS), version 3.6.1, was run offline for the period 1990–2011 over a domain centered on eastern Canada, driven by atmospheric forcing data dynamically downscaled from ERA-Interim using the Canadian Regional Climate Model. The precipitation inputs were adjusted to replicate the monthly average precipitation reported in the CRU observational database. The simulated fractional snow cover and the surface albedo were evaluated using NOAA Interactive Multisensor Snow and Ice Mapping System and MODIS data, and the snow water equivalent was evaluated using CMC, Global Snow Monitoring for Climate Research (GlobSnow), and Hydro-Québec products. The modeled fractional snow cover agreed well with the observational estimates. The albedo of snow-covered areas showed a bias of up to −0.15 in boreal forest regions, owing to neglect of subgrid-scale lakes in the simulation. In June, conversely, there was a positive albedo bias in the remaining snow-covered areas, likely caused by neglect of impurities in the snow. The validation of the snow water equivalent was complicated by the fact that the three observation-based datasets differed widely. Also, the downward adjustment of the forcing precipitation clearly resulted in a low snow bias in some regions. However, where the density of the observations was high, the CLASS snow model was deemed to have performed well. Sensitivity tests confirmed the satisfactory behavior of the current parameterizations of snow thermal conductivity, snow albedo refreshment threshold, and limiting snow depth and underlined the importance of snow interception by vegetation. Overall, the study demonstrated the necessity of using a wide variety of observation-based datasets for model validation.


2014 ◽  
Vol 15 (4) ◽  
pp. 1325-1343 ◽  
Author(s):  
A. Langlois ◽  
J. Bergeron ◽  
R. Brown ◽  
A. Royer ◽  
R. Harvey ◽  
...  

Abstract Snow cover simulations from versions 2.7 and 3.5 of the Canadian Land Surface Scheme (CLASS) coupled to the Canadian Regional Climate Model, version 4 (CRCM4), are evaluated over northern Québec and the larger Québec domain using in situ and remotely sensed datasets. Version 2.7 of CLASS has been used in the operational version of CRCM4 at Ouranos since 2006. Version 3.5 includes a number of improvements to the snow processes as well as a more realistic parameterization of snow thermal conductivity. The evaluation shows that version 3.5 provides improved simulations of snow water equivalent, density, depth, and snowpack temperature values. However, snowpack density still contains systematic biases during the snow season that need to be addressed. The snow albedo parameterization in CLASS was found to be very sensitive to an empirical snowfall rate threshold for albedo refreshment and does not keep track of the snow accumulation history in estimating the snow surface albedo. A modified albedo scheme based on snow-specific surface areas is proposed to address this problem.


2013 ◽  
Vol 10 (6) ◽  
pp. 7651-7686 ◽  
Author(s):  
M. Ménégoz ◽  
H. Gallée ◽  
H. W. Jacobi

Abstract. We applied a Regional Climate Model (RCM) to simulate precipitation and snow cover over the Himalaya, between March 2000 to December 2002. Due to its higher resolution, our model simulates a more realistic spatial variability of wind and precipitation than those of the reanalysis used as boundary conditions. In this region, we found very large discrepancies between the estimations of precipitation provided by reanalysis, rain gauges networks, satellite observations, and our RCM simulation. Our model clearly underestimates precipitation at the foothills of the Himalaya and in its Eastern part. However, our simulation brings an interesting estimation of liquid and solid precipitation in high altitude areas, where satellite and rain gauge networks are few reliable. We found our model to simulate quite accurately the snow cover extent and duration for the two years of simulation in these areas. Snow accumulation and snow duration differ widely along the Himalaya: snowfall can occur during the whole year Western Himalaya, due to both summer monsoon and mid-latitude low pressure systems bringing moisture into this region. In Central Himalaya and on the Tibetan plateau, a much more marked dry season occurs from October to March. Snow cover does not have a well marked seasonal cycle in these regions, since it depends both on the quite variable duration of the monsoon and on the rare but possible occurrence of snowfall during the winter.


2017 ◽  
Vol 18 (4) ◽  
pp. 1101-1119 ◽  
Author(s):  
Melissa L. Wrzesien ◽  
Michael T. Durand ◽  
Tamlin M. Pavelsky ◽  
Ian M. Howat ◽  
Steven A. Margulis ◽  
...  

Abstract Despite the importance of snow in global water and energy budgets, estimates of global mountain snow water equivalent (SWE) are not well constrained. Two approaches for estimating total range-wide SWE over Sierra Nevada, California, are assessed: 1) global/hemispherical models and remote sensing and models available for continental United States (CONUS) plus southern Canada (CONUS+) available to the scientific community and 2) regional climate model simulations via the Weather Research and Forecasting (WRF) Model run at 3, 9, and 27 km. As no truth dataset provides total mountain range SWE, these two approaches are compared to a “reference” SWE consisting of three published, independent datasets that utilize/validate against in situ SWE measurements. Model outputs are compared with the reference datasets for three water years: 2005 (high snow accumulation), 2009 (average), and 2014 (low). There is a distinctive difference between the reference/WRF datasets and the global/CONUS+ daily estimates of SWE, with the former suggesting up to an order of magnitude more snow. Results are qualitatively similar for peak SWE and 1 April SWE for all three years. Analysis of SWE time series indicates that lower SWE for global and CONUS+ datasets is likely due to precipitation, rain/snow partitioning, and ablation parameterization differences. It is found that WRF produces reasonable (within 50%) estimates of total mountain range SWE in the Sierra Nevada, while the global and CONUS+ datasets underestimate SWE.


2006 ◽  
Vol 134 (3) ◽  
pp. 854-873 ◽  
Author(s):  
Soline Bielli ◽  
René Laprise

Abstract The purpose of this work is to study the added value of a regional climate model with respect to the global analyses used to drive the regional simulation, with a special emphasis on the nonlinear interactions between different spatial scales, focusing on the moisture flux divergence. The atmospheric water budget is used to apply the spatial-scale decomposition approach, as it is a key factor in the energetics of the climate. A Fourier analysis is performed individually for each field on pressure levels. Each field involved in the computation of moisture flux divergence is separated into three components that represent selected scale bands, using the discrete cosine transform. The divergence of the moisture flux is computed from the filtered fields. Instantaneous and monthly mean fields from a simulation performed with the Canadian Regional Climate Model are decomposed and allowed to separate the added value of the model to the total fields. Results show that the added value resides in the nonlinear interactions between large (greater than 1000 km) and small (smaller than 600 km) scales. The main small-scale forcing of the wind is topographic, whereas the humidity tends to show more small scales over the ocean. The time-mean divergence of moisture flux is also decomposed into contributions from stationary eddies and transient eddies. Both stationary and transient eddies are decomposed into different spatial scales and show very different patterns. The time-mean divergence due to transient eddies is dominated by large-scale (synoptic scale) features with little small scales. The divergence due to stationary eddies is a combination of small- and large-scale terms, and the main small-scale contribution occurs over the topography. The same decomposition has been applied to the NCEP–NCAR reanalyses used to drive the regional simulation; the results show that the model best reproduces the time-fluctuation component of the moisture flux divergence, with a correlation between the model simulation and the NCEP–NCAR reanalyses above 0.90.


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
X. Zhou ◽  
H. Matthes ◽  
A. Rinke ◽  
K. Klehmet ◽  
B. Heim ◽  
...  

This paper evaluates the simulated Arctic land snow cover duration, snow water equivalent, snow cover fraction, surface albedo, and land surface temperature in the regional climate model HIRHAM5 during 2008–2010, compared with various satellite and reanalysis data and one further regional climate model (COSMO-CLM). HIRHAM5 shows a general agreement in the spatial patterns and annual course of these variables, although distinct biases for specific regions and months are obvious. The most prominent biases occur for east Siberian deciduous forest albedo, which is overestimated in the simulation for snow covered conditions in spring. This may be caused by the simplified albedo parameterization (e.g., nonconsideration of different forest types and neglecting the effect of fallen leaves and branches on snow for deciduous tree forest). The land surface temperature biases mirror the albedo biases in their spatial and temporal structures. The snow cover fraction and albedo biases can explain the simulated land surface temperature bias of ca. −3°C over the Siberian forest area in spring.


Sign in / Sign up

Export Citation Format

Share Document