scholarly journals Uncertainty analysis of a spatially explicit annual water-balance model: case study of the Cape Fear basin, North Carolina

2015 ◽  
Vol 19 (2) ◽  
pp. 839-853 ◽  
Author(s):  
P. Hamel ◽  
A. J. Guswa

Abstract. There is an increasing demand for assessment of water provisioning ecosystem services. While simple models with low data and expertise requirements are attractive, their use as decision-aid tools should be supported by uncertainty characterization. We assessed the performance of the InVEST annual water yield model, a popular tool for ecosystem service assessment based on the Budyko hydrological framework. Our study involved the comparison of 10 subcatchments ranging in size and land-use configuration, in the Cape Fear basin, North Carolina. We analyzed the model sensitivity to climate variables and input parameters, and the structural error associated with the use of the Budyko framework, a lumped (catchment-scale) model theory, in a spatially explicit way. Comparison of model predictions with observations and with the lumped model predictions confirmed that the InVEST model is able to represent differences in land uses and therefore in the spatial distribution of water provisioning services. Our results emphasize the effect of climate input errors, especially annual precipitation, and errors in the ecohydrological parameter Z, which are both comparable to the model structure uncertainties. Our case study supports the use of the model for predicting land-use change effect on water provisioning, although its use for identifying areas of high water yield will be influenced by precipitation errors. While some results are context-specific, our study provides general insights and methods to help identify the regions and decision contexts where the model predictions may be used with confidence.

2014 ◽  
Vol 11 (10) ◽  
pp. 11001-11036 ◽  
Author(s):  
P. Hamel ◽  
A. J. Guswa

Abstract. There is an increasing demand for assessment of water provisioning ecosystem services. While simple models with low data and expertise requirements are attractive, their use as decision-aid tools should be supported by uncertainty characterization. We assessed the performance of the InVEST annual water yield model, a popular tool for ecosystem service assessment based on the Budyko framework. Our study involved the comparison of ten subcatchments in the Cape Fear watershed, NC, ranging in size and land use configuration. We analyzed the model sensitivity to the eco-hydrological parameters and the effect of extrapolating a lumped theory to a fully distributed model. Comparison of the model predictions with observations and with a lumped water balance model confirmed that the model is able to represent differences in land uses. Our results also emphasize the effect of climate input errors, especially annual precipitation, and errors in the eco-hydrological parameter Z, which are both comparable to the model structure uncertainties. In practice, our case study supports the use of the model for predicting land use change effect on water provisioning, although its use for identifying areas of high water yield will be influenced by precipitation errors. While the results are inherently local, analysis of the model structure suggests that many insights from this study will hold globally. Further work toward characterization of uncertainties in such simple models will help identify the regions and decision contexts where the model predictions may be used with confidence.


Ibis ◽  
2009 ◽  
Vol 152 (1) ◽  
pp. 63-76 ◽  
Author(s):  
NIGEL D. BOATMAN ◽  
STÉPHANE PIETRAVALLE ◽  
HAZEL R. PARRY ◽  
JOE CROCKER ◽  
PAUL V. IRVING ◽  
...  

2010 ◽  
Vol 42 (2) ◽  
pp. 357-365 ◽  
Author(s):  
Peter A. Groothuis

In the last settler's syndrome, each new settler wants the area to remain as it was on their arrival. Newcomers' preferences often differ from long-term residents, and conflicts arise. To explore land use issues among various groups, a survey of opinions on mountain views was developed and administered to Watauga County residents in western North Carolina. Watauga County provides an interesting case study, because it is a growing area with an influx of newcomers along with long-time residents. The results suggest that agreements can be achieved on some land use issues, whereas disagreements will arise on others.


2018 ◽  
Vol 10 (4) ◽  
pp. 960 ◽  
Author(s):  
Suxiao Li ◽  
Hong Yang ◽  
Martin Lacayo ◽  
Junguo Liu ◽  
Guangchun Lei

2019 ◽  
Vol 276 ◽  
pp. 04014
Author(s):  
Nurdin ◽  
Syaiful Bahri ◽  
Zulkarnain ◽  
Sukendi

This study aims to analyze the hydrological characteristics as a result of changes in land use with the help of the SWAT hydrological model and can provide recommendations on the best land use in the Koto Panjang Electric Power catchment area. Based on the results of the analysis using the SWAT hydrological model, it was seen that there were effects of land use changes in 2011 and 2014 on hydrological characteristics; yield of water (WATER YLD) of 2,413.38 mm, and 1.008, 65 mm, runoff coefficient (C) of 0.19 and 0.063 respectively, and river regime coefficient (KRS) of 11.449 and 12.212, respectively. The best land use to be developed in agricultural cultivation areas as a recommendation to maintain water stability in the Koto Panjang hydropower catchment area is a simple and complex agroforestry pattern in scenario III, which is run together with hydrological characteristics in the form; water yield (WATER YLD) of 1,038.41, surface runoff coefficient (C) of 0.023, and river regime coefficient (KRS) of 11.13. The hydrological characteristics in scenario III are far better than 2014 land use characteristics (existing).


2021 ◽  
Author(s):  
Shilei Peng ◽  
Chunying Wang ◽  
Sadao Eguchi ◽  
Kanta Kuramochi ◽  
Masato Igura ◽  
...  

<p>Hydrological processes at basin scale are driven by climate and land-use changes. Hiso River watershed (HRW) is within a radiocesium contaminated area caused by the disaster in Fukushima Daiichi nuclear power plant (FDNPP). It’s urgently needed to make evaluations on how changes of climate and land-use bring impacts on hydrological processes, which control pollutants transport in watershed. This study applied a combination method of Statistical DownScaling Model (SDSM) and Soil and Water Assessment Tool (SWAT) to generate future climatic and hydrologic variables. Future climate data was obtained from three Representative Concentration Pathway (RCP2.6, 4.5 and 8.5) scenarios of a single General Circulation Models (GCMs) in three future periods of 2030s, 2060s and 2090s (2010-2039, 2040-2069, 2070-2099), with a baseline period (1980-2009). Furthermore, according to land-use change in HRW during 2013-2017, three land-use change scenarios under the three future climate scenarios were established. Results suggested that SDSM showed good capabilities in capturing daily maximum/minimum temperature and precipitation. The SWAT model presented good performances in simulating monthly and yearly streamflow. Results also suggested projected higher temperatures and lower rainfall led to decreased annual water yield and evapotranspiration (ET). The annual water yield and ET decreased in most seasons while had a slight increase in spring. RCP8.5 scenario always generated larger magnitudes for climatic variables and water balance components compared with other climate scenarios. Land-use changes had strong impact on surface runoff and groundwater flow. These findings could provide reference for decontamination and revitalization policy-making under complicated land use and climate change conditions.</p>


Sign in / Sign up

Export Citation Format

Share Document