scholarly journals Understanding the potential of climate teleconnections to project future groundwater drought

2019 ◽  
Author(s):  
William Rust ◽  
Ian Holman ◽  
John Bloomfield ◽  
Mark Cuthbert ◽  
Ron Corstanje

Abstract. Predicting the next major drought is of paramount interest to water managers, globally. Estimating the onset of groundwater drought is of particular importance, as groundwater resources are often assumed to be more resilient when surface water resources begin to fail. A potential source of long-term forecasting is offered by possible periodic controls on groundwater level via teleconnections with oscillatory ocean-atmosphere systems. However, relationships between large-scale climate systems and regional to local-scale rainfall, ET and groundwater are often complex and non-linear so that the influence of long-term climate cycles on groundwater drought remains poorly understood. Furthermore it is currently unknown whether the absolute contribution of multi-annual climate variability to total groundwater storage is significant. This study assesses the extent to which inter-annual variability in groundwater can be used to indicate the timing of groundwater droughts in the UK. Continuous wavelet transforms show how repeating teleconnection-driven 7-year and 16–32 year cycles in the majority of groundwater sites from all the UK's major aquifers can systematically control the recurrence of groundwater drought; and we provide evidence that these periodic modes are driven by teleconnections. Wavelet reconstructions demonstrate that multi-annual periodicities of the North Atlantic Oscillation, known to drive North Atlantic meteorology, comprise up to 40 % of the total groundwater storage variability. Furthermore, the majority of UK recorded droughts in recent history coincide with a minima phase in the 7-year NAO-driven cycles in groundwater level, allowing the estimation of future drought occurrences on a multi-annual timescale. Long-range groundwater drought forecasts via climate teleconnections present transformational opportunities to drought prediction and its management across the North Atlantic region.

2019 ◽  
Vol 23 (8) ◽  
pp. 3233-3245 ◽  
Author(s):  
William Rust ◽  
Ian Holman ◽  
John Bloomfield ◽  
Mark Cuthbert ◽  
Ron Corstanje

Abstract. Predicting the next major drought is of paramount interest to water managers globally. Estimating the onset of groundwater drought is of particular importance, as groundwater resources are often assumed to be more resilient when surface water resources begin to fail. A potential source of long-term forecasting is offered by possible periodic controls on groundwater level via teleconnections with oscillatory ocean–atmosphere systems. However, relationships between large-scale climate systems and regional to local-scale rainfall, evapotranspiration (ET) and groundwater are often complex and non-linear so that the influence of long-term climate cycles on groundwater drought remains poorly understood. Furthermore, it is currently unknown whether the absolute contribution of multi-annual climate variability to total groundwater storage is significant. This study assesses the extent to which multi-annual variability in groundwater can be used to indicate the timing of groundwater droughts in the UK. Continuous wavelet transforms show how repeating teleconnection-driven 7-year and 16–32-year cycles in the majority of groundwater sites from all the UK's major aquifers can systematically control the recurrence of groundwater drought; and we provide evidence that these periodic modes are driven by teleconnections. Wavelet reconstructions demonstrate that multi-annual periodicities of the North Atlantic Oscillation, known to drive North Atlantic meteorology, comprise up to 40 % of the total groundwater storage variability. Furthermore, the majority of UK recorded droughts in recent history coincide with a minimum phase in the 7-year NAO-driven cycles in groundwater level, providing insight into drought occurrences on a multi-annual timescale. Long-range groundwater drought forecasts via climate teleconnections present transformational opportunities to drought prediction and its management across the North Atlantic region.


Author(s):  
Robert H. Ellison

Prompted by the convulsions of the late eighteenth century and inspired by the expansion of evangelicalism across the North Atlantic world, Protestant Dissenters from the 1790s eagerly subscribed to a millennial vision of a world transformed through missionary activism and religious revival. Voluntary societies proliferated in the early nineteenth century to spread the gospel and transform society at home and overseas. In doing so, they engaged many thousands of converts who felt the call to share their experience of personal conversion with others. Though social respectability and business methods became a notable feature of Victorian Nonconformity, the religious populism of the earlier period did not disappear and religious revival remained a key component of Dissenting experience. The impact of this revitalization was mixed. On the one hand, growth was not sustained in the long term and, to some extent, involvement in interdenominational activity undermined denominational identity; on the other hand, Nonconformists gained a social and political prominence they had not enjoyed since the middle of the seventeenth century and their efforts laid the basis for the twentieth-century explosion of evangelicalism in Africa, Asia, and South America.


2015 ◽  
Vol 12 (17) ◽  
pp. 15223-15244
Author(s):  
M. L. Breeden ◽  
G. A. McKinley

Abstract. The North Atlantic is the most intense region of ocean CO2 uptake. Here, we investigate multidecadal timescale variability of the partial pressure CO2 (pCO2) that is due to the natural carbon cycle using a regional model forced with realistic climate and pre-industrial atmospheric pCO2 for 1948–2009. Large-scale patterns of natural pCO2 variability are primarily associated with basin-averaged sea surface temperature (SST) that, in turn, is composed of two parts: the Atlantic Multidecadal Oscillation (AMO) and a long-term positive SST trend. The North Atlantic Oscillation (NAO) drives a secondary mode of variability. For the primary mode, positive AMO and the SST trend modify pCO2 with different mechanisms and spatial patterns. Warming with the positive AMO increases subpolar gyre pCO2, but there is also a significant reduction of dissolved inorganic carbon (DIC) due primarily to reduced vertical mixing. The net impact of positive AMO is to reduce pCO2 in the subpolar gyre. Through direct impacts on SST, the net impacts of positive AMO is to increase pCO2 in the subtropical gyre. From 1980 to present, long-term SST warming has amplified AMO impacts on pCO2.


2019 ◽  
Vol 47 (2) ◽  
pp. 246-265
Author(s):  
A. K. Ambrosimov ◽  
N. A. Diansky ◽  
A. A. Kluvitkin ◽  
V. A. Melnikov

Based on time series of near-bottom current velocities and temperatures obtained in the period June, 2016 to July, 2017, at three points in the Atlantic Subarctic Front, along with the use of multi-year (since 1993 up to now) satellite ocean surface sounding data, multi-scale fluctuations of ocean surface and near-bottom flows over the western and eastern flanks of the Reykjanes ridge, as well as near Hatton Rise, on the Rokoll plateau, are studied. Hydrological profiles were carried out from the ocean surface to the bottom with readings every 10 m, when setting and retrieving the buoy stations. Using data from the Bank of hydrological stations (WOD13), SST satellite arrays (Pathfinder), long-term sea level and geostrophic velocities time series (AVISO), and bottom topography (model ETOPO-1), features of longterm cyclical fluctuations of SST, sea level, geostrophic currents on the ocean surface were defined in the sub-polar North Atlantic. It is shown that, in accordance with the large-scale thermohaline structure of the Subarctic front, two branches of the North Atlantic Current are detected on the ocean surface.One is directed from the Hatton towards the Icelandic-Faroese Rise, and the other – alomg the western flank of the Reykjanes Ridge toward Iceland. For the first branch, which is the main continuation of the North Atlantic Current, the average (for 25 years) water drift at a speed of 9.1±0.1 cm/s is determined to the northeast. The second branch, which forms the eastern part of the Subarctic cyclonic gyre, has the average water drift at a speed of 4.0±0.1 cm/s is directed north-northeast, along the western flank of the Reykjanes Ridge. In the intermediate waters of the frontal zone, an average water flow is observed at a speed of 2.7±0.1 cm/s to the north-northeast, along the eastern slope of the Reykjanes ridge.Due to the multy-scale components of the total variability, the average kinetic energy densities(KED) of total currents (109, 45, 97, (±3) erg/cm3, at station points from east to west) are much greater than the mean drift KED. The near-bottom flows on the Reykjanes ridge flanks are opposite to the direction of the North Atlantic Current. Outside the Subarctic gyre, the direction of average transport is maintained from the ocean surface to the bottom. The average (per year) KED of near-bottom currents are 31, 143, 27 (±3 erg/cm3), for three stations from east to west, respectively. In the intermediate waters of the frontal zone, above the eastern slope of the Reykjanes Ridge, there is a powerful reverse (relative to the North Atlantic Current) near-bottom water flow to the south-west, with a high average speed of ~ 15 cm/s. The KED of the currents during the year varies widely from zero to ~ 600 erg/cm3. The overall variability is due to cyclical variations and intermittency (“flashes”) of currents. Perennial cycles, seasonal variations, synoptic fluctuations with periods in the range of 30–300 days, as well as inertial oscillations and semi-diurnal tidal waves are distinguished. The intermittency of oscillations is partly due to changes in low-frequency flows, which can lead to a dopler frequency shift in the cyclic components of the spectrum. The amplitude of temperature fluctuations in the bottom layer for the year was (0.07–0.10) ± 0.01°C by the standard deviation. The seasonal changes of the bottom temperature are not detected. However, a linear trend with a warming of ~ (0.10–0.15) ± 0.01°С per year is noticeable.


2021 ◽  
Author(s):  
Terhi K. Laurila ◽  
Victoria A. Sinclair ◽  
Hilppa Gregow

<p>The knowledge of long-term climate and variability of near-surface wind speeds is essential and widely used among meteorologists, climate scientists and in industries such as wind energy and forestry. The new high-resolution ERA5 reanalysis from the European Centre for Medium-Range Weather Forecasts (ECMWF) will likely be used as a reference in future climate projections and in many wind-related applications. Hence, it is important to know what is the mean climate and variability of wind speeds in ERA5.</p><p>We present the monthly 10-m wind speed climate and decadal variability in the North Atlantic and Europe during the 40-year period (1979-2018) based on ERA5. In addition, we examine temporal time series and possible trends in three locations: the central North Atlantic, Finland and Iberian Peninsula. Moreover, we investigate what are the physical reasons for the decadal changes in 10-m wind speeds.</p><p>The 40-year mean and the 98th percentile wind speeds show a distinct contrast between land and sea with the strongest winds over the ocean and a seasonal variation with the strongest winds during winter time. The winds have the highest values and variabilities associated with storm tracks and local wind phenomena such as the mistral. To investigate the extremeness of the winds, we defined an extreme find factor (EWF) which is the ratio between the 98th percentile and mean wind speeds. The EWF is higher in southern Europe than in northern Europe during all months. Mostly no statistically significant linear trends of 10-m wind speeds were found in the 40-year period in the three locations and the annual and decadal variability was large.</p><p>The windiest decade in northern Europe was the 1990s and in southern Europe the 1980s and 2010s. The decadal changes in 10-m wind speeds were largely explained by the position of the jet stream and storm tracks and the strength of the north-south pressure gradient over the North Atlantic. In addition, we investigated the correlation between the North Atlantic Oscillation (NAO) and the Atlantic Multi-decadal Oscillation (AMO) in the three locations. The NAO has a positive correlation in the central North Atlantic and Finland and a negative correlation in Iberian Peninsula. The AMO correlates moderately with the winds in the central North Atlantic but no correlation was found in Finland or the Iberian Peninsula. Overall, our study highlights that rather than just using long-term linear trends in wind speeds it is more informative to consider inter-annual or decadal variability.</p>


2021 ◽  
pp. 1-38
Author(s):  
Xi Guo ◽  
James P. Kossin ◽  
Zhe-Min Tan

AbstractTropical cyclone (TC) translation speed (TCTS) can affect the duration of TC-related disasters, which is critical to coastal and inland areas. The long-term variation of TCTS and their relationship to the variability of the mid-latitude jet stream and storm migration are discussed here for storms near the North Atlantic coast during 1948-2019. Our results reveal the prominent seasonality in the long-term variation of TCTS, which can be largely explained by the seasonality in the covariations of the mid-latitude jet stream and storm locations. Specifically, significant increases of TCTS occur in June and October during the past decades, which may result from the equatorward displacement of the jet stream and poleward migration of storm locations. Prominent slowdown of TCTS is found in August, which is related to the weakened jet strength and equatorward storm migration. In September, the effects of poleward displacement and weakening of the jet stream on TCTS are largely compensated by the poleward storm migration, therefore, no significant change in TCTS is observed. Meanwhile, the multidecadal variability of the Atlantic may contribute to the multidecadal variability of TCTS. Our findings emphasize the significance in taking a seasonality view in discussing the variability and trends of near-coast Atlantic TCTS under climate change.


2020 ◽  
Vol 17 (9) ◽  
pp. 2553-2577
Author(s):  
Coraline Leseurre ◽  
Claire Lo Monaco ◽  
Gilles Reverdin ◽  
Nicolas Metzl ◽  
Jonathan Fin ◽  
...  

Abstract. The North Atlantic is one of the major ocean sinks for natural and anthropogenic atmospheric CO2. Given the variability of the circulation, convective processes or warming–cooling recognized in the high latitudes in this region, a better understanding of the CO2 sink temporal variability and associated acidification needs a close inspection of seasonal, interannual to multidecadal observations. In this study, we investigate the evolution of CO2 uptake and ocean acidification in the North Atlantic Subpolar Gyre (50–64∘ N) using repeated observations collected over the last 3 decades in the framework of the long-term monitoring program SURATLANT (SURveillance de l'ATLANTique). Over the full period (1993–2017) pH decreases (−0.0017 yr−1) and fugacity of CO2 (fCO2) increases (+1.70 µatm yr−1). The trend of fCO2 in surface water is slightly less than the atmospheric rate (+1.96 µatm yr−1). This is mainly due to dissolved inorganic carbon (DIC) increase associated with the anthropogenic signal. However, over shorter periods (4–10 years) and depending on the season, we detect significant variability investigated in more detail in this study. Data obtained between 1993 and 1997 suggest a rapid increase in fCO2 in summer (up to +14 µatm yr−1) that was driven by a significant warming and an increase in DIC for a short period. Similar fCO2 trends are observed between 2001 and 2007 during both summer and winter, but, without significant warming detected, these trends are mainly explained by an increase in DIC and a decrease in alkalinity. This also leads to a pH decrease but with contrasting trends depending on the region and season (between −0.006 and −0.013 yr−1). Conversely, data obtained during the last decade (2008–2017) in summer show a cooling of surface waters and an increase in alkalinity, leading to a strong decrease in surface fCO2 (between −4.4 and −2.3 µatm yr−1; i.e., the ocean CO2 sink increases). Surprisingly, during summer, pH increases up to +0.0052 yr−1 in the southern subpolar gyre. Overall, our results show that, in addition to the accumulation of anthropogenic CO2, the temporal changes in the uptake of CO2 and ocean acidification in the North Atlantic Subpolar Gyre present significant multiannual variability, not clearly directly associated with the North Atlantic Oscillation (NAO). With such variability it is uncertain to predict the near-future evolution of air–sea CO2 fluxes and pH in this region. Thus, it is highly recommended to maintain long-term observations to monitor these properties in the next decade.


2012 ◽  
Vol 16 (5) ◽  
pp. 1389-1399 ◽  
Author(s):  
P. De Vita ◽  
V. Allocca ◽  
F. Manna ◽  
S. Fabbrocino

Abstract. Thus far, studies on climate change have focused mainly on the variability of the atmospheric and surface components of the hydrologic cycle, investigating the impact of this variability on the environment, especially with respect to the risks of desertification, droughts and floods. Conversely, the impacts of climate change on the recharge of aquifers and on the variability of groundwater flow have been less investigated, especially in Mediterranean karst areas whose water supply systems depend heavily upon groundwater exploitation. In this paper, long-term climatic variability and its influence on groundwater recharge were analysed by examining decadal patterns of precipitation, air temperature and spring discharges in the Campania region (southern Italy), coupled with the North Atlantic Oscillation (NAO). The time series of precipitation and air temperature were gathered over 90 yr, from 1921 to 2010, using 18 rain gauges and 9 air temperature stations with the most continuous functioning. The time series of the winter NAO index and of the discharges of 3 karst springs, selected from those feeding the major aqueducts systems, were collected for the same period. Regional normalised indexes of the precipitation, air temperature and karst spring discharges were calculated, and different methods were applied to analyse the related time series, including long-term trend analysis using smoothing numerical techniques, cross-correlation and Fourier analysis. The investigation of the normalised indexes highlighted the existence of long-term complex periodicities, from 2 to more than 30 yr, with differences in average values of up to approximately ±30% for precipitation and karst spring discharges, which were both strongly correlated with the winter NAO index. Although the effects of the North Atlantic Oscillation (NAO) had already been demonstrated in the long-term precipitation and streamflow patterns of different European countries and Mediterranean areas, the results of this study allow for the establishment of a link between a large-scale atmospheric cycle and the groundwater recharge of carbonate karst aquifers. Consequently, the winter NAO index could also be considered as a proxy to forecast the decadal variability of groundwater flow in Mediterranean karst areas.


2011 ◽  
Vol 24 (22) ◽  
pp. 5812-5830 ◽  
Author(s):  
Zeng-Zhen Hu ◽  
Arun Kumar ◽  
Bohua Huang ◽  
Yan Xue ◽  
Wanqiu Wang ◽  
...  

Abstract In this work, the authors analyze the air–sea interaction processes associated with the persistent atmospheric and oceanic anomalies in the North Atlantic Ocean during summer 2009–summer 2010 with a record-breaking positive sea surface temperature anomaly (SSTA) in the hurricane Main Development Region (MDR) in the spring and summer of 2010. Contributions to the anomalies from the El Niño–Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO), and a long-term trend are identified. The warming in the tropical North Atlantic during summer 2009–summer 2010 represented a typical response to ENSO, preconditioned and amplified by the influence of a strong and persistent negative phase of the NAO. The long-term trends enhanced the warming in the high and low latitudes and weakened the cooling in the midlatitudes. The persistent negative phase of the NAO was associated with active thermodynamic air–sea interaction in the North Atlantic basin. Surface wind anomalies associated with the NAO altered the ocean surface heat flux and changed the SSTA, which was likely further enhanced by the positive wind speed–evaporation–SST feedback. The total heat flux was dominated by the latent and sensible heat fluxes, while the shortwave radiation contributed to the tropical SSTA to a lesser degree. Sensitivity experiments with an atmospheric general circulation model forced by observed SST in the Atlantic Ocean alone suggested that the Atlantic SSTA, which was partly forced by the NAO, had some positive contribution to the persistence of the negative phase of the NAO. Therefore, the persistent NAO condition is partly an outcome of the global climate anomalies and the ocean–atmosphere feedback within the Atlantic basin. The combination of the ENSO, NAO, and long-term trend resulted in the record-breaking positive SSTA in the MDR in the boreal spring and summer of 2010. On the basis of the statistical relationship, the SSTA pattern in the North Atlantic was reasonably well predicted by using the preceding ENSO and NAO as predictors.


Sign in / Sign up

Export Citation Format

Share Document