scholarly journals Effect of Water Surface Area on the Remotely Sensed Water Quality Parameters of Baysh Dam Lake, Saudi Arabia

2019 ◽  
Author(s):  
Mohamed Elhag ◽  
Ioannis Gitas ◽  
Anas Othman ◽  
Jarbou Bahrawi

Abstract. Water quality parameters help to decide the further use of water based on its quality. Changes in water surface area in the lake shall affect the water quality. Chlorophyll a, Nitrate concentration and water turbidity were extracted from satellite images to record each variation on these parameters caused by the water amount in the lake changes. Each water quality measures have been recorded with its surface area reading to analyses the effects. Water quality parameters were estimated from Sentinel-2 sensor based on the satellite temporal resolution for the years 2017–2018. Data were pre-processed then processed to estimate the Maximum Chlorophyll Index (MCI), Green Normalized Difference Vegetation Index (GNDVI) and Normalized Difference Turbidity Index (NDTI). The Normalized Difference Water Index (NDWI), was used to calculate and record the changes in the water surface area in Baysh dam lake. Results showed different correlation coefficients between the lake surface area and the water quality parameters estimated Remote Sensing data. The response of the water quality parameters to surface water changes was expressed in four different surface water categories. MCI is more sensitive to surface water changes rather than GNDVI and NDTI. Neural network Analysis showed a resemblance between GNDVI and NDTI expressed in sigmoidal function while MCI showed a different behavior expressed in exponential behavior. Therefore, monitoring of the surface water area of the lack is essential in water quality monitoring.

2021 ◽  
Vol 83 (3) ◽  
pp. 29-36
Author(s):  
Thanh Giao Nguyen ◽  
Vo Quang Minh

The study aimed to evaluate the surface water quality of the Tien River and identify water quality parameters to be monitored using the water quality monitoring data in the period of 2011 - 2019. The water samples were collected at five locations from Tan Chau to Cho Moi districts, An Giang province for three times per year (i.e., in March, June, and September). Water quality parameters included temperature (oC), pH, dissolved oxygen (DO), total suspended solids (TSS), nitrate (NO3--N), orthophosphate (PO43--P), biological oxygen demand (BOD), and coliforms. These parameter results were compared with the national technical regulation on surface water quality QCVN 08-MT: 2015/BTNMT, column A1. Principal component analysis (PCA) was used to identify the sources of pollution and the main factors affecting water quality. The results of this study showed that DO concentration was lower and TSS, BOD, PO43--P, coliforms concentrations in the Tien river exceeded QCVN 08-MT: 2015/BTNMT, column A1. pH, temperature, and NO3--N values were in accordance with the permitted regulation. The water monitoring parameters were seasonally fluctuated. DO, BOD, TSS, and coliforms concentrations were higher in the rainy season whereas NO3--N and PO43--P were higher in the dry season. The PCA results illustrated that pH, TSS, DO, BOD, PO43--P and coliforms should be included in the monitoring program. Other indicators such as temperature and NO3--N could be considered excluded from the program to save costs. 


2018 ◽  
Vol 69 (8) ◽  
pp. 2045-2049
Author(s):  
Catalina Gabriela Gheorghe ◽  
Andreea Bondarev ◽  
Ion Onutu

Monitoring of environmental factors allows the achievement of some important objectives regarding water quality, forecasting, warning and intervention. The aim of this paper is to investigate water quality parameters in some potential pollutant sources from northern, southern and east-southern areas of Romania. Surface water quality data for some selected chemical parameters were collected and analyzed at different points from March to May 2017.


2018 ◽  
Vol 63 ◽  
pp. 00017
Author(s):  
Michał Lupa ◽  
Katarzyna Adamek ◽  
Renata Stypień ◽  
Wojciech Sarlej

The study examines how LANDSAT images can be used to monitor inland surface water quality effectively by using correlations between various indicators. Wigry lake (area 21.7 km2) was selected for the study as an example. The study uses images acquired in the years 1990–2016. Analysis was performed on data from 35 months and seven water condition indicators were analyzed: turbidity, Secchi disc depth, Dissolved Organic Material (DOM), chlorophyll-a, Modified Normalized Difference Water Index (MNDWI), Normalized Difference Water Index (NDWI) and Normalized Difference Vegetation Index (NDVI). The analysis of results also took into consideration the main relationships described by the water circulation cycle. Based on the analysis of all indicators, clear trends describing a systematic improvement of water quality in Lake Wigry were observed.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-23 ◽  
Author(s):  
Yashon O. Ouma ◽  
Clinton O. Okuku ◽  
Evalyne N. Njau

The process of predicting water quality over a catchment area is complex due to the inherently nonlinear interactions between the water quality parameters and their temporal and spatial variability. The empirical, conceptual, and physical distributed models for the simulation of hydrological interactions may not adequately represent the nonlinear dynamics in the process of water quality prediction, especially in watersheds with scarce water quality monitoring networks. To overcome the lack of data in water quality monitoring and prediction, this paper presents an approach based on the feedforward neural network (FNN) model for the simulation and prediction of dissolved oxygen (DO) in the Nyando River basin in Kenya. To understand the influence of the contributing factors to the DO variations, the model considered the inputs from the available water quality parameters (WQPs) including discharge, electrical conductivity (EC), pH, turbidity, temperature, total phosphates (TPs), and total nitrates (TNs) as the basin land-use and land-cover (LULC) percentages. The performance of the FNN model is compared with the multiple linear regression (MLR) model. For both FNN and MLR models, the use of the eight water quality parameters yielded the best DO prediction results with respective Pearson correlation coefficient R values of 0.8546 and 0.6199. In the model optimization, EC, TP, TN, pH, and temperature were most significant contributing water quality parameters with 85.5% in DO prediction. For both models, LULC gave the best results with successful prediction of DO at nearly 98% degree of accuracy, with the combination of LULC and the water quality parameters presenting the same degree of accuracy for both FNN and MLR models.


Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 267 ◽  
Author(s):  
Ersilia D’Ambrosio ◽  
Anna De Girolamo ◽  
Marinella Spanò ◽  
Vera Corbelli ◽  
Gennaro Capasso ◽  
...  

The objective of the present work is a spatial analysis aimed at supporting hydrological and water quality model applications in the Canale d’Aiedda basin (Puglia, Italy), a data-limited area. The basin is part of the sensitive environmental area of Taranto that requires remediation of the soil, subsoil, surface water, and groundwater. A monitoring plan was defined to record the streamflow and water quality parameters needed for calibrating and validating models, and a database archived in a GIS environment was built, which includes climatic data, soil hydraulic parameters, groundwater data, surface water quality parameters, point-source parameters, and information on agricultural practices. Based on a one-year monitoring of activities, the average annual loads of N-NO3 and P-PO4 delivered to the Mar Piccolo amounted to about 42 t year−1, and 2 t year−1, respectively. Knowledge uncertainty in monthly load estimation was found to be up to 25% for N-NO3 and 40% for P-PO4. The contributions of point sources in terms of N-NO3 and P-PO4 were estimated at 45% and 77%, respectively. This study defines a procedure for supporting modelling activities at the basin scale for data-limited regions.


Author(s):  
Fouzi Lezzar ◽  
Djamel Benmerzoug ◽  
Ilham Kitouni

<p class="0abstract"><span lang="EN-US">This work presents an Internet of Things (IoT) solution to facilitate real time water quality monitoring by enabling the management of collected data from electronic sensors. Firstly, we present in detail problems encountered during the used data collection process. We discuss after the requirements from the water monitoring quality standpoint, data acquisition, cloud processing and data visualization to the end user. We designed a solution to minimize technicians’ visits to isolated water tower, we designed sensors achieving a lifespan of several years. The solution will be capable of scaling the processing and storage resources. This combination of technologies can cope with different types of environments. The system also provides a notification to a remote user, when there is a non-conformity of water quality parameters with the pre-defined set of standard values.</span></p>


Ekoloji ◽  
2012 ◽  
Vol 21 (82) ◽  
pp. 77-88 ◽  
Author(s):  
Fatma Gultekin ◽  
Arzu Firat Ersoy ◽  
Esra Hatipoglu ◽  
Secil Celep

Sign in / Sign up

Export Citation Format

Share Document