scholarly journals Developing a hydrological monitoring and sub-seasonal to seasonal forecasting system for South and Southeast Asian river basins

2020 ◽  
Author(s):  
Yifan Zhou ◽  
Benjamin F. Zaitchik ◽  
Sujay V. Kumar ◽  
Kristi R. Arsenault ◽  
Mir A. Matin ◽  
...  

Abstract. South and Southeast Asia is subject to significant hydrometeorological extremes, including drought. Under rising temperatures, growing populations, and an apparent weakening of the South Asian monsoon in recent decades, concerns regarding drought and its potential impacts on water and food security are on the rise. Reliable sub-seasonal to seasonal (S2S) hydrological forecasts could, in principle, help governments and international organizations to better assess risk and act in the face of an oncoming drought. Here, we leverage recent improvements in S2S meteorological forecasts and the growing power of Earth Observations to provide more accurate monitoring of hydrological states for forecast initialization. Information from both sources is merged in a South and Southeast Asia sub-seasonal to seasonal hydrological forecasting system (SAHFS-S2S), developed collaboratively with the NASA SERVIR program and end-users across the region. This system applies the Noah-MultiParameterization (NoahMP) Land Surface Model (LSM) in the NASA Land Information System (LIS), driven by downscaled meteorological fields from the Global Data Assimilation System (GDAS) and Climate Hazards InfraRed Precipitation products (CHIRP and CHIRPS) to optimize initial conditions. The NASA Goddard Earth Observing System Model - sub-seasonal to seasonal (GEOS-S2S) forecasts, downscaled using the National Center for Atmospheric Research (NCAR) General Analog Regression Downscaling (GARD) tool and quantile mapping, are then applied to drive 5-km resolution hydrological forecasts to a 9-month forecast time horizon. Results show that the skillful predictions of root zone soil moisture can be made one to two months in advance for forecasts initialized in rainy seasons and up to 8 months when initialized in dry seasons. The memory of accurate initial conditions can positively contribute to forecast skills throughout the entire 9-month prediction period in areas with limited precipitation. This SAHFS-S2S has been operationalized at the International Centre for Integrated Mountain Development (ICIMOD) to support drought monitoring and warning needs in the region.

2021 ◽  
Vol 25 (1) ◽  
pp. 41-61
Author(s):  
Yifan Zhou ◽  
Benjamin F. Zaitchik ◽  
Sujay V. Kumar ◽  
Kristi R. Arsenault ◽  
Mir A. Matin ◽  
...  

Abstract. South and Southeast Asia is subject to significant hydrometeorological extremes, including drought. Under rising temperatures, growing populations, and an apparent weakening of the South Asian monsoon in recent decades, concerns regarding drought and its potential impacts on water and food security are on the rise. Reliable sub-seasonal to seasonal (S2S) hydrological forecasts could, in principle, help governments and international organizations to better assess risk and act in the face of an oncoming drought. Here, we leverage recent improvements in S2S meteorological forecasts and the growing power of Earth observations to provide more accurate monitoring of hydrological states for forecast initialization. Information from both sources is merged in a South and Southeast Asia sub-seasonal to seasonal hydrological forecasting system (SAHFS-S2S), developed collaboratively with the NASA SERVIR program and end users across the region. This system applies the Noah-Multiparameterization (NoahMP) Land Surface Model (LSM) in the NASA Land Information System (LIS), driven by downscaled meteorological fields from the Global Data Assimilation System (GDAS) and Climate Hazards InfraRed Precipitation products (CHIRP and CHIRPS) to optimize initial conditions. The NASA Goddard Earth Observing System Model sub-seasonal to seasonal (GEOS-S2S) forecasts, downscaled using the National Center for Atmospheric Research (NCAR) General Analog Regression Downscaling (GARD) tool and quantile mapping, are then applied to drive 5 km resolution hydrological forecasts to a 9-month forecast time horizon. Results show that the skillful predictions of root zone soil moisture can be made 1 to 2 months in advance for forecasts initialized in rainy seasons and up to 8 months when initialized in dry seasons. The memory of accurate initial conditions can positively contribute to forecast skills throughout the entire 9-month prediction period in areas with limited precipitation. This SAHFS-S2S has been operationalized at the International Centre for Integrated Mountain Development (ICIMOD) to support drought monitoring and warning needs in the region.


Author(s):  
Rolf H. Reichle ◽  
Qing Liu ◽  
Joseph V. Ardizzone ◽  
Wade T. Crow ◽  
Gabrielle J. M. De Lannoy ◽  
...  

AbstractSoil Moisture Active Passive (SMAP) mission L-band brightness temperature (Tb) observations are routinely assimilated into the Catchment land surface model to generate Level-4 Soil Moisture (L4_SM) estimates of global surface and root-zone soil moisture at 9-km, 3-hourly resolution with ~2.5-day latency. The Catchment model in the L4_SM algorithm is driven with ¼-degree, hourly surface meteorological forcing data from the Goddard Earth Observing System (GEOS). Outside of Africa and the high latitudes, GEOS precipitation is corrected using Climate Prediction Center Unified (CPCU) gauge-based, ½-degree, daily precipitation. L4_SM soil moisture was previously shown to improve over land model-only estimates that use CPCU precipitation but no Tb assimilation (CPCU_SIM). Here, we additionally examine the skill of model-only (CTRL) and Tb assimilation-only (SMAP_DA) estimates derived without CPCU precipitation. Soil moisture is assessed versus in situ measurements in well-instrumented regions and globally through the Instrumental Variable (IV) method using independent soil moisture retrievals from the Advanced Scatterometer. At the in situ locations, SMAP_DA and CPCU_SIM have comparable soil moisture skill improvements relative to CTRL for the unbiased root-mean-square error (surface and root-zone) and correlation metrics (root-zone only). In the global average, SMAP Tb assimilation increases the surface soil moisture anomaly correlation by 0.10-0.11 compared to an increase of 0.02-0.03 from the CPCU-based precipitation corrections. The contrast is particularly strong in central Australia, where CPCU is known to have errors and observation-minus-forecast Tb residuals are larger when CPCU precipitation is used. Validation versus streamflow measurements in the contiguous U.S. reveals that CPCU precipitation provides most of the skill gained in L4_SM runoff estimates over CTRL.


2018 ◽  
Author(s):  
Kristi R. Arsenault ◽  
Sujay V. Kumar ◽  
James V. Geiger ◽  
Shugong Wang ◽  
Eric Kemp ◽  
...  

Abstract. The effective applications of land surface model (LSM) and hydrologic models pose a varied set of data input and processing needs, ranging from ensuring consistency checks to more derived data processing and analytics. This article describes the development of the Land surface Data Toolkit (LDT), which is an integrated framework designed specifically for processing input data to execute LSMs and hydrological models. LDT not only serves as a pre-processor to the NASA Land Information System (LIS), which is an integrated framework designed for multi-model LSM simulations and data assimilation (DA) integrations, but also as a land surface-based observation and DA input processor. It offers a variety of user options and inputs to processing datasets for use within LIS and stand alone models. The LDT design facilitates the use of common data formats and conventions. LDT is also capable of processing LSM initial conditions, meteorological boundary conditions and ensuring data quality for inputs to LSMs and DA routines. The machine learning layer in LDT facilitates the use of modern data science algorithms for developing data-driven predictive models. Through the use of an object-oriented framework design, LDT provides extensible features for the continued development of support for different types of observational data sets and data analytics algorithms to aid land surface modelling and data assimilation.


2016 ◽  
Vol 20 (12) ◽  
pp. 4895-4911 ◽  
Author(s):  
Gabriëlle J. M. De Lannoy ◽  
Rolf H. Reichle

Abstract. Three different data products from the Soil Moisture Ocean Salinity (SMOS) mission are assimilated separately into the Goddard Earth Observing System Model, version 5 (GEOS-5) to improve estimates of surface and root-zone soil moisture. The first product consists of multi-angle, dual-polarization brightness temperature (Tb) observations at the bottom of the atmosphere extracted from Level 1 data. The second product is a derived SMOS Tb product that mimics the data at a 40° incidence angle from the Soil Moisture Active Passive (SMAP) mission. The third product is the operational SMOS Level 2 surface soil moisture (SM) retrieval product. The assimilation system uses a spatially distributed ensemble Kalman filter (EnKF) with seasonally varying climatological bias mitigation for Tb assimilation, whereas a time-invariant cumulative density function matching is used for SM retrieval assimilation. All assimilation experiments improve the soil moisture estimates compared to model-only simulations in terms of unbiased root-mean-square differences and anomaly correlations during the period from 1 July 2010 to 1 May 2015 and for 187 sites across the US. Especially in areas where the satellite data are most sensitive to surface soil moisture, large skill improvements (e.g., an increase in the anomaly correlation by 0.1) are found in the surface soil moisture. The domain-average surface and root-zone skill metrics are similar among the various assimilation experiments, but large differences in skill are found locally. The observation-minus-forecast residuals and analysis increments reveal large differences in how the observations add value in the Tb and SM retrieval assimilation systems. The distinct patterns of these diagnostics in the two systems reflect observation and model errors patterns that are not well captured in the assigned EnKF error parameters. Consequently, a localized optimization of the EnKF error parameters is needed to further improve Tb or SM retrieval assimilation.


2016 ◽  
Author(s):  
H. S. Benavides Pinjosovsky ◽  
S. Thiria ◽  
C. Ottlé ◽  
J. Brajard ◽  
F. Badran ◽  
...  

Abstract. The SECHIBA module of the ORCHIDEE land surface model describes the exchanges of water and energy between the surface and the atmosphere. In the present paper, the adjoint semi-generator software denoted YAO was used as a framework to implement a 4D-VAR assimilation method. The objective was to deliver the adjoint model of SECHIBA (SECHIBA-YAO) obtained with YAO to provide an opportunity for scientists and end users to perform their own assimilation. SECHIBA-YAO allows the control of the eleven most influent internal parameters of SECHIBA or of the initial conditions of the soil water content by observing the land surface temperature measured in situ or as it could be observed by remote sensing as brightness temperature. The paper presents the fundamental principles of the 4D-Var assimilation, the semi-generator software YAO and some experiments showing the accuracy of the adjoint code distributed. In addition, a distributed version is available when only the land surface temperature is observed.


2021 ◽  
Author(s):  
Adam Pasik ◽  
Wolfgang Preimesberger ◽  
Bernhard Bauer-Marschallinger ◽  
Wouter Dorigo

<p>Multiple satellite-based global surface soil moisture (SSM) datasets are presently available, these however, address exclusively the top layer of the soil (0-5cm). Meanwhile, root-zone soil moisture cannot be directly quantified with remote sensing but can be estimated from SSM using a land surface model. Alternatively, soil water index (SWI; calculated from SSM as a function of time needed for infiltration) can be used as a simple approximation of root-zone conditions. SWI is a proxy for deeper layers of the soil profile which control evapotranspiration, and is hence especially important for studying hydrological processes over vegetation-covered areas and meteorological modelling.</p><p>Here we introduce the advances in our work on the first operationally capable SWI-based root-zone soil moisture dataset from C3S Soil Moisture v201912 COMBINED product, spanning the period 2002-2020. The uniqueness of this dataset lies in the fact that T-values (temporal lengths ruling the infiltration) characteristic of SWI were translated into particular soil depths making it much more intuitive, user-friendly and easily applicable. Available are volumetric soil moisture values for the top 1 m of the soil profile at 10 cm intervals, where the optimal T-value (T-best) for each soil layer is selected based on a range of correlation metrics with in situ measurements from the International Soil Moisture Network (ISMN) and the relevant soil and climatic parameters.<br>Additionally we present the results of an extensive global validation against in situ measurements (ISMN) as well as the results of investigations into the relationship between a range of soil and climate characteristics and the optimal T-values for particular soil depths.</p>


2013 ◽  
Vol 52 (10) ◽  
pp. 2312-2327 ◽  
Author(s):  
Peter Greve ◽  
Kirsten Warrach-Sagi ◽  
Volker Wulfmeyer

AbstractSoil water content (SWC) depends on and affects the energy flux partitioning at the land–atmosphere interface. Above all, the latent heat flux is limited by the SWC of the root zone on one hand and radiation on the other. Therefore, SWC is a key variable in the climate system. In this study, the performance of the Weather Research and Forecasting model coupled with the Noah land surface model (WRF-Noah) system in a climate hindcast simulation from 1990 to 2008 is evaluated with respect to SWC versus two reanalysis datasets for Europe during 2007 and 2008 with in situ soil moisture observations from southern France. When compared with the in situ observations, WRF-Noah generally reproduces the SWC annual cycle while the reanalysis SWCs do not. The biases in areal mean WRF-Noah SWCs relate to biases in precipitation and evapotranspiration in a cropland environment. The spatial patterns and temporal variability of the seasonal mean SWCs from the WRF-Noah simulations and from the two reanalyses correspond well, while absolute values differ significantly, especially at the regional scale.


2004 ◽  
Vol 43 (10) ◽  
pp. 1477-1497 ◽  
Author(s):  
Youlong Xia ◽  
Mrinal K. Sen ◽  
Charles S. Jackson ◽  
Paul L. Stoffa

Abstract This study evaluates the ability of Bayesian stochastic inversion (BSI) and multicriteria (MC) methods to search for the optimal parameter sets of the Chameleon Surface Model (CHASM) using prescribed forcing to simulate observed sensible and latent heat fluxes from seven measurement sites representative of six biomes including temperate coniferous forests, tropical forests, temperate and tropical grasslands, temperate crops, and semiarid grasslands. Calibration results with the BSI and MC show that estimated optimal values are very similar for the important parameters that are specific to the CHASM model. The model simulations based on estimated optimal parameter sets perform much better than the default parameter sets. Cross-validations for two tropical forest sites show that the calibrated parameters for one site can be transferred to another site within the same biome. The uncertainties of optimal parameters are obtained through BSI, which estimates a multidimensional posterior probability density function (PPD). Marginal PPD analyses show that nonoptimal choices of stomatal resistance would contribute most to model simulation errors at all sites, followed by ground and vegetation roughness length at six of seven sites. The impact of initial root-zone soil moisture and nonmosaic approach on estimation of optimal parameters and their uncertainties is discussed.


2019 ◽  
Vol 20 (5) ◽  
pp. 793-819 ◽  
Author(s):  
Joseph A. Santanello Jr. ◽  
Patricia Lawston ◽  
Sujay Kumar ◽  
Eli Dennis

Abstract The role of soil moisture in NWP has gained more attention in recent years, as studies have demonstrated impacts of land surface states on ambient weather from diurnal to seasonal scales. However, soil moisture initialization approaches in coupled models remain quite diverse in terms of their complexity and observational roots, while assessment using bulk forecast statistics can be simplistic and misleading. In this study, a suite of soil moisture initialization approaches is used to generate short-term coupled forecasts over the U.S. Southern Great Plains using NASA’s Land Information System (LIS) and NASA Unified WRF (NU-WRF) modeling systems. This includes a wide range of currently used initialization approaches, including soil moisture derived from “off the shelf” products such as atmospheric models and land data assimilation systems, high-resolution land surface model spinups, and satellite-based soil moisture products from SMAP. Results indicate that the spread across initialization approaches can be quite large in terms of soil moisture conditions and spatial resolution, and that SMAP performs well in terms of heterogeneity and temporal dynamics when compared against high-resolution land surface model and in situ soil moisture estimates. Case studies are analyzed using the local land–atmosphere coupling (LoCo) framework that relies on integrated assessment of soil moisture, surface flux, boundary layer, and ambient weather, with results highlighting the critical role of inherent model background biases. In addition, simultaneous assessment of land versus atmospheric initial conditions in an integrated, process-level fashion can help address the question of whether improvements in traditional NWP verification statistics are achieved for the right reasons.


Sign in / Sign up

Export Citation Format

Share Document