scholarly journals Evaluation of model-based seasonal streamflow and water allocation forecasts for the Elqui Valley, Chile

2017 ◽  
Vol 21 (9) ◽  
pp. 4711-4725 ◽  
Author(s):  
Justin Delorit ◽  
Edmundo Cristian Gonzalez Ortuya ◽  
Paul Block

Abstract. In many semi-arid regions, multisectoral demands often stress available water supplies. Such is the case in the Elqui River valley of northern Chile, which draws on a limited-capacity reservoir to allocate 25 000 water rights. Delayed infrastructure investment forces water managers to address demand-based allocation strategies, particularly in dry years, which are realized through reductions in the volume associated with each water right. Skillful season-ahead streamflow forecasts have the potential to inform managers with an indication of future conditions to guide reservoir allocations. This work evaluates season-ahead statistical prediction models of October–January (growing season) streamflow at multiple lead times associated with manager and user decision points, and links predictions with a reservoir allocation tool. Skillful results (streamflow forecasts outperform climatology) are produced for short lead times (1 September: ranked probability skill score (RPSS) of 0.31, categorical hit skill score of 61 %). At longer lead times, climatological skill exceeds forecast skill due to fewer observations of precipitation. However, coupling the 1 September statistical forecast model with a sea surface temperature phase and strength statistical model allows for equally skillful categorical streamflow forecasts to be produced for a 1 May lead, triggered for 60 % of years (1950–2015), suggesting forecasts need not be strictly deterministic to be useful for water rights holders. An early (1 May) categorical indication of expected conditions is reinforced with a deterministic forecast (1 September) as more observations of local variables become available. The reservoir allocation model is skillful at the 1 September lead (categorical hit skill score of 53 %); skill improves to 79 % when categorical allocation prediction certainty exceeds 80 %. This result implies that allocation efficiency may improve when forecasts are integrated into reservoir decision frameworks. The methods applied here advance the understanding of the mechanisms and timing responsible for moisture transport to the Elqui Valley and provide a unique application of streamflow forecasting in the prediction of water right allocations.

2017 ◽  
Author(s):  
Justin Delorit ◽  
Edmundo Cristian Gonzalez Ortuya ◽  
Paul Block

Abstract. In many semi-arid regions, agriculture, energy, municipal, and environmental demands often stress available water supplies. Such is the case in the Elqui River valley of northern Chile, which draws on a limited capacity reservoir and annually variable snowmelt. With infrastructure investments often deferred or delayed, water managers are forced to address demand-based allocation strategies, particularly challenging in dry years. This is often realized through a reduction in the volume associated with each water right, applied across all water rights holders. Skillful season-ahead streamflow forecasts have the potential to inform managers with an indication of likely future conditions upon which to set the annual water right volume and thereby guide reservoir allocations. This work evaluates season-ahead statistical prediction models of October-January (austral growing season) streamflow at multiple lead times associated with manager and user decision points, and link predictions with a simple reservoir allocation tool.


2016 ◽  
Author(s):  
Harm-Jan F. Benninga ◽  
Martijn J. Booij ◽  
Renata J. Romanowicz ◽  
Tom H. M. Rientjes

Abstract. The paper presents a methodology to give insight in the performance of ensemble streamflow forecasting systems. We developed an ensemble forecasting system for the Biała Tarnowska, a mountainous river catchment in southern Poland, and analysed the performance for lead times from 1 day to 10 days for low, medium and high streamflow and related runoff generating processes. Precipitation and temperature forecasts from the European Centre for Medium-Range Weather Forecasts serve as input to a deterministic lumped hydrological (HBV) model. Due to inconsistent bias, the best streamflow forecasts were obtained without pre- and post-processing of the meteorological and streamflow forecasts. Best forecast skill, relative to alternative forecasts based on historical measurements of precipitation and temperature, is shown for high streamflow and for snow accumulation low streamflow events. Forecasts of medium streamflow events and low streamflow events generated by precipitation deficit show less skill. To improve the performance of the forecasting system for high streamflow events, in particular the meteorological forecasts require improvement. For low streamflow forecasts, the hydrological model should be improved. The study recommends improving the reliability of the ensemble streamflow forecasts by including the uncertainties in hydrological model parameters and initial conditions, and by improving the dispersion of the meteorological input forecasts.


2013 ◽  
Vol 17 (9) ◽  
pp. 3587-3603 ◽  
Author(s):  
D. E. Robertson ◽  
D. L. Shrestha ◽  
Q. J. Wang

Abstract. Sub-daily ensemble rainfall forecasts that are bias free and reliably quantify forecast uncertainty are critical for flood and short-term ensemble streamflow forecasting. Post-processing of rainfall predictions from numerical weather prediction models is typically required to provide rainfall forecasts with these properties. In this paper, a new approach to generate ensemble rainfall forecasts by post-processing raw numerical weather prediction (NWP) rainfall predictions is introduced. The approach uses a simplified version of the Bayesian joint probability modelling approach to produce forecast probability distributions for individual locations and forecast lead times. Ensemble forecasts with appropriate spatial and temporal correlations are then generated by linking samples from the forecast probability distributions using the Schaake shuffle. The new approach is evaluated by applying it to post-process predictions from the ACCESS-R numerical weather prediction model at rain gauge locations in the Ovens catchment in southern Australia. The joint distribution of NWP predicted and observed rainfall is shown to be well described by the assumed log-sinh transformed bivariate normal distribution. Ensemble forecasts produced using the approach are shown to be more skilful than the raw NWP predictions both for individual forecast lead times and for cumulative totals throughout all forecast lead times. Skill increases result from the correction of not only the mean bias, but also biases conditional on the magnitude of the NWP rainfall prediction. The post-processed forecast ensembles are demonstrated to successfully discriminate between events and non-events for both small and large rainfall occurrences, and reliably quantify the forecast uncertainty. Future work will assess the efficacy of the post-processing method for a wider range of climatic conditions and also investigate the benefits of using post-processed rainfall forecasts for flood and short-term streamflow forecasting.


2017 ◽  
Vol 21 (10) ◽  
pp. 5273-5291 ◽  
Author(s):  
Harm-Jan F. Benninga ◽  
Martijn J. Booij ◽  
Renata J. Romanowicz ◽  
Tom H. M. Rientjes

Abstract. The paper presents a methodology that gives insight into the performance of ensemble streamflow-forecasting systems. We have developed an ensemble forecasting system for the Biała Tarnowska, a mountainous river catchment in southern Poland, and analysed the performance for lead times ranging from 1 to 10 days for low, medium and high streamflow and different hydrometeorological conditions. Precipitation and temperature forecasts from the European Centre for Medium-Range Weather Forecasts served as inputs to a deterministic lumped hydrological (HBV) model. Due to a non-homogeneous bias in time, pre- and post-processing of the meteorological and streamflow forecasts are not effective. The best forecast skill, relative to alternative forecasts based on meteorological climatology, is shown for high streamflow and snow accumulation low-streamflow events. Forecasts of medium-streamflow events and low-streamflow events under precipitation deficit conditions show less skill. To improve performance of the forecasting system for high-streamflow events, the meteorological forecasts are most important. Besides, it is recommended that the hydrological model be calibrated specifically on low-streamflow conditions and high-streamflow conditions. Further, it is recommended that the dispersion (reliability) of the ensemble streamflow forecasts is enlarged by including the uncertainties in the hydrological model parameters and the initial conditions, and by enlarging the dispersion of the meteorological input forecasts.


2017 ◽  
Vol 18 (7) ◽  
pp. 1905-1928 ◽  
Author(s):  
Ridwan Siddique ◽  
Alfonso Mejia

Abstract The quality of ensemble streamflow forecasts in the U.S. mid-Atlantic region (MAR) is investigated for short- to medium-range forecast lead times (6–168 h). To this end, a regional hydrological ensemble prediction system (RHEPS) is assembled and implemented. The RHEPS in this case comprises the ensemble meteorological forcing, a distributed hydrological model, and a statistical postprocessor. As the meteorological forcing, precipitation, and near-surface temperature outputs from the National Oceanic and Atmospheric Administration (NOAA)/National Centers for Environmental Prediction (NCEP) 11-member Global Ensemble Forecast System Reforecast, version 2 (GEFSRv2), are used. The Hydrology Laboratory Research Distributed Hydrologic Model (HL-RDHM) is used as the distributed hydrological model, and a statistical autoregressive model with an exogenous variable is used as the postprocessor. To verify streamflow forecasts from the RHEPS, eight river basins in the MAR are selected, ranging in drainage area from ~262 to 29 965 km2 and covering some of the major rivers in the MAR. The verification results for the RHEPS show that, at the initial lead times (1–3 days), the hydrological uncertainties have more impact on forecast skill than the meteorological ones. The former become less pronounced, and the meteorological uncertainties dominate, across longer lead times (>3 days). Nonetheless, the ensemble streamflow forecasts remain skillful for lead times of up to 7 days. Additionally, postprocessing increases forecast skills across lead times and spatial scales, particularly for the high-flow conditions. Overall, the proposed RHEPS is able to improve streamflow forecasting in the MAR relative to the deterministic (unperturbed GEFSRv2 member) forecasting case.


2021 ◽  
Author(s):  
Donghoon Lee ◽  
Jia Yi Ng ◽  
Stefano Galelli ◽  
Paul Block

Abstract. The potential benefits of seasonal streamflow forecasts for the hydropower sector have been evaluated for several basins across the world, but with contrasting conclusions on the expected benefits. This raises the prospect of a complex relationship between reservoir characteristics, forecast skill and value. Here, we unfold the nature of this relationship by studying time series of simulated power production for 735 headwater dams worldwide. The time series are generated by running a detailed dam model over the period 1958–2000 with three operating schemes: basic control rules, perfect forecast-informed, and realistic forecast-informed. The realistic forecasts are issued by tailored statistical prediction models—based on lagged global and local hydro-climatic variables—predicting seasonal monthly dam inflows. As expected, results show that most dams (94 %) could benefit from perfect forecasts. Yet, the benefits for each dam vary greatly and are primarily controlled by the time-to-fill and the ratio between reservoir depth and hydraulic head. When realistic forecasts are adopted, 25 % of dams demonstrate improvements with respect to basic control rules. In this case, the likelihood of observing improvements is controlled not only by design specifications but also by forecast skill. We conclude our analysis by identifying two groups of dams of particular interest: dams that fall in regions expressing strong forecast accuracy and have the potential to reap benefits from forecast-informed operations, and dams with strong potential to benefit from forecast-informed operations but fall in regions lacking forecast accuracy. Overall, these results represent a first qualitative step towards informing site-specific hydropower studies.


2018 ◽  
Vol 22 (12) ◽  
pp. 6257-6278 ◽  
Author(s):  
Fitsum Woldemeskel ◽  
David McInerney ◽  
Julien Lerat ◽  
Mark Thyer ◽  
Dmitri Kavetski ◽  
...  

Abstract. Streamflow forecasting is prone to substantial uncertainty due to errors in meteorological forecasts, hydrological model structure, and parameterization, as well as in the observed rainfall and streamflow data used to calibrate the models. Statistical streamflow post-processing is an important technique available to improve the probabilistic properties of the forecasts. This study evaluates post-processing approaches based on three transformations – logarithmic (Log), log-sinh (Log-Sinh), and Box–Cox with λ=0.2 (BC0.2) – and identifies the best-performing scheme for post-processing monthly and seasonal (3-months-ahead) streamflow forecasts, such as those produced by the Australian Bureau of Meteorology. Using the Bureau's operational dynamic streamflow forecasting system, we carry out comprehensive analysis of the three post-processing schemes across 300 Australian catchments with a wide range of hydro-climatic conditions. Forecast verification is assessed using reliability and sharpness metrics, as well as the Continuous Ranked Probability Skill Score (CRPSS). Results show that the uncorrected forecasts (i.e. without post-processing) are unreliable at half of the catchments. Post-processing of forecasts substantially improves reliability, with more than 90 % of forecasts classified as reliable. In terms of sharpness, the BC0.2 scheme substantially outperforms the Log and Log-Sinh schemes. Overall, the BC0.2 scheme achieves reliable and sharper-than-climatology forecasts at a larger number of catchments than the Log and Log-Sinh schemes. The improvements in forecast reliability and sharpness achieved using the BC0.2 post-processing scheme will help water managers and users of the forecasting service make better-informed decisions in planning and management of water resources. Highlights. Uncorrected and post-processed streamflow forecasts (using three transformations, namely Log, Log-Sinh, and BC0.2) are evaluated over 300 diverse Australian catchments. Post-processing enhances streamflow forecast reliability, increasing the percentage of catchments with reliable predictions from 50 % to over 90 %. The BC0.2 transformation achieves substantially better forecast sharpness than the Log-Sinh and Log transformations, particularly in dry catchments.


2017 ◽  
Author(s):  
James C. Bennett ◽  
Quan J. Wang ◽  
David E. Robertson ◽  
Andrew Schepen ◽  
Ming Li ◽  
...  

Abstract. Despite an increasing availability of skillful long-range streamflow forecasts, many water agencies still rely on simple resampled historical inflow sequences (stochastic scenarios) to plan operations over the coming year. We assess a recently developed forecasting system called forecast guided stochastic scenarios (FoGSS) as a skillful alternative to standard stochastic scenarios for the Australian continent. FoGSS uses climate forecasts from a coupled ocean-land-atmosphere prediction system, post-processed with the method of calibration, bridging and merging. Ensemble rainfall forecasts force a monthly rainfall-runoff model, while a staged hydrological error model quantifies and propagates hydrological forecast uncertainty through forecast lead times. FoGSS is able to generate ensemble streamflow forecasts in the form of monthly time series to a 12-month forecast horizon. FoGSS is tested on 63 Australian catchments that cover a wide range of climates, including 21 ephemeral rivers. In all perennial and many ephemeral catchments, FoGSS provides an effective alternative to resampled historical inflow sequences. FoGSS generally produces skillful forecasts at shorter lead times (


2021 ◽  
Author(s):  
Colin Keating ◽  
Donghoon Lee ◽  
Juan Bazo ◽  
Paul Block

Abstract. Disaster planning has historically allocated minimal effort and finances toward advanced preparedness, however evidence supports reduced vulnerability to flood events, saving lives and money, through appropriate early actions. Among other requirements, effective early action systems necessitate the availability of high-quality forecasts to inform decision making. In this study, we evaluate the ability of statistical and physically based season-ahead prediction models to appropriately trigger flood early preparedness actions based on a 75 % or greater probability of surpassing the 80th percentile of historical seasonal streamflow for the flood-prone Marañón River and Piura River in Peru. The statistical prediction model, developed in this work, leverages the asymmetric relationship between seasonal streamflow and the ENSO phenomenon. Additionally, a multi-model (least squares combination) is also evaluated against current operational practices. The statistical and multi-model predictions demonstrate superior performance compared to the physically based model for the Marañón River by correctly triggering preparedness actions in all four historical occasions. For the Piura River, the statistical model proves superior to all other approaches, and even achieves an 86 % hit rate when the required threshold exceedance probability is reduced to 50 %, with only one false alarm. Continued efforts should focus on applying this season-ahead prediction framework to additional flood-prone locations where early actions may be warranted and current forecast capacity is limited.


2013 ◽  
Vol 14 (5) ◽  
pp. 1587-1604 ◽  
Author(s):  
Eric A. Rosenberg ◽  
Andrew W. Wood ◽  
Anne C. Steinemann

Abstract A hydrometric network design approach is developed for enhancing statistical seasonal streamflow forecasts. The approach employs gridded, model-simulated water balance variables as predictors in equations generated via principal components regression in order to identify locations for additional observations that most improve forecast skill. The approach is applied toward the expansion of the Natural Resources Conservation Service (NRCS) Snowpack Telemetry (SNOTEL) network in 24 western U.S. basins using two forecasting scenarios: one that assumes the currently standard predictors of snow water equivalent and water year-to-date precipitation and one that considers soil moisture as an additional predictor variable. Resulting improvements are spatially and temporally analyzed, attributed to dominant predictor contributions, and evaluated in the context of operational NRCS forecasts, ensemble-based National Weather Service (NWS) forecasts, and historical as-issued NRCS/NWS coordinated forecasts. Findings indicate that, except for basins with sparse existing networks, substantial improvements in forecast skill are only possible through the addition of soil moisture variables. Furthermore, locations identified as optimal for soil moisture sensor installation are primarily found in regions of low to mid elevation, in contrast to the higher elevations where SNOTEL stations are traditionally situated. The study corroborates prior research while demonstrating that soil moisture data can explicitly improve operational water supply forecasts (particularly during the accumulation season), that statistical forecasts are comparable in skill to ensemble-based forecasts, and that simulated hydrologic data can be combined with observations to improve statistical forecasts. The approach can be generalized to other settings and applications involving the use of point observations for statistical prediction models.


Sign in / Sign up

Export Citation Format

Share Document