scholarly journals Monthly streamflow forecasting at varying spatial scales in the Rhine basin

2018 ◽  
Vol 22 (2) ◽  
pp. 929-942 ◽  
Author(s):  
Simon Schick ◽  
Ole Rössler ◽  
Rolf Weingartner

Abstract. Model output statistics (MOS) methods can be used to empirically relate an environmental variable of interest to predictions from earth system models (ESMs). This variable often belongs to a spatial scale not resolved by the ESM. Here, using the linear model fitted by least squares, we regress monthly mean streamflow of the Rhine River at Lobith and Basel against seasonal predictions of precipitation, surface air temperature, and runoff from the European Centre for Medium-Range Weather Forecasts. To address potential effects of a scale mismatch between the ESM's horizontal grid resolution and the hydrological application, the MOS method is further tested with an experiment conducted at the subcatchment scale. This experiment applies the MOS method to 133 additional gauging stations located within the Rhine basin and combines the forecasts from the subcatchments to predict streamflow at Lobith and Basel. In doing so, the MOS method is tested for catchments areas covering 4 orders of magnitude. Using data from the period 1981–2011, the results show that skill, with respect to climatology, is restricted on average to the first month ahead. This result holds for both the predictor combination that mimics the initial conditions and the predictor combinations that additionally include the dynamical seasonal predictions. The latter, however, reduce the mean absolute error of the former in the range of 5 to 12 %, which is consistently reproduced at the subcatchment scale. An additional experiment conducted for 5-day mean streamflow indicates that the dynamical predictions help to reduce uncertainties up to about 20 days ahead, but it also reveals some shortcomings of the present MOS method.

2017 ◽  
Author(s):  
Simon Schick ◽  
Ole Rössler ◽  
Rolf Weingartner

Abstract. Model output statistics (MOS) methods empirically relate an environmental variable of interest to predictions from general circulation models (GCMs). This variable often belongs to a spatial scale not resolved by the GCM. Here, using the linear model fitted by least squares, we regress monthly mean streamflow of the Rhine River at Lobith and Basel against seasonal predictions of precipitation, surface air temperature, and runoff from the European Centre for Medium-Range Weather Forecasts. To address potential effects of a scale mismatch between the GCM's horizontal grid resolution and the hydrological application, the MOS method is further tested with an experiment conducted at the subcatchment scale. This experiment applies the MOS method to 133 additional gauging stations located within the Rhine basin and combines the forecasts from the subcatchments to predict streamflow at Lobith and Basel. In so doing, the MOS method is tested for catchments areas covering four orders of magnitude. Using data from the period 1981–2011, the results show that skill, with respect to climatology, is restricted to the first month ahead. This result holds for both the predictor combination that mimics the initial conditions and the predictor combinations that additionally include the dynamical seasonal predictions. The latter, however, reduces the mean absolute error of the former in the range of 5 to 11 percent, which is consistently reproduced at the subcatchment scale. The results further indicate that bias corrected runoff from the H-TESSEL land surface model is an interesting option when it comes to seasonal streamflow forecasting in large river basins.


2019 ◽  
Vol 20 (7) ◽  
pp. 1399-1416
Author(s):  
Simon Schick ◽  
Ole Rössler ◽  
Rolf Weingartner

AbstractSubseasonal and seasonal forecasts of the atmosphere, oceans, sea ice, or land surfaces often rely on Earth system model (ESM) simulations. While the most recent generation of ESMs simulates runoff per land surface grid cell operationally, it does not typically simulate river streamflow directly. Here, we apply the model output statistics (MOS) method to the hindcast archive of the European Centre for Medium-Range Weather Forecasts (ECMWF). Linear models are tested that regress observed river streamflow on surface runoff, subsurface runoff, total runoff, precipitation, and surface air temperature simulated by ECMWF’s forecast systems S4 and SEAS5. In addition, the pool of candidate predictors contains observed precipitation and surface air temperature preceding the date of prediction. The experiment is conducted for 16 European catchments in the period 1981–2006 and focuses on monthly average streamflow at lead times of 0 and 20 days. The results show that skill against the streamflow climatology is frequently absent and varies considerably between predictor combinations, catchments, and seasons. Using streamflow persistence as a benchmark model further deteriorates skill. This is most pronounced for a catchment that features lakes, which extend to about 14% of the catchment area. On average, however, the predictor combinations using the ESM runoff simulations tend to perform best.


2018 ◽  
Author(s):  
Bart van Osnabrugge ◽  
Remko Uijlenhoet ◽  
Albrecht Weerts

Abstract. Medium term hydrologic forecast uncertainty is strongly dependent on the forecast quality of meteorological variables. Of these variables, the influence of precipitation has been studied most widely, while temperature, radiative forcing and their derived product potential evapotranspiration (PET) have received little attention from the perspective of hydrological forecasting. This study aims to fill this gap by assessing the usability of potential evaporation forecasts for 10-day-ahead streamflow forecasting in the Rhine basin, Europe. In addition, the forecasts of the meteorological variables are compared with observations. Streamflow reforecasts were performed with the daily wflow_hbv model used in previous studies of the Rhine using the ECMWF 20-year meteorological reforecast dataset. Meteorological forecasts were compared with observed rainfall, temperature, global radiation and potential evaporation for 148 subbasins. Secondly, the effect of using PET climatology versus using observation-based estimates of PET was assessed for hydrological state and for streamflow forecast skill. We find that: (1) there is considerable skill in the ECMWF reforecasts to predict PET for all seasons, (2) using dynamical PET forcing based on observed temperature and satellite global radiation estimates results in lower evaporation and wetter initial states, but (3) the effect on forecasted 10-day streamflow is limited. Implications of this finding are that it is reasonable to use meteorological forecasts to forecast potential evaporation and use this is in medium-range streamflow forecasts. However, it can be concluded that an approach using PET climatology is also sufficient, most probably not only for the application shown here, but for most models similar to the HBV concept and for moderate climate zones. As a by-product, this research resulted in gridded datasets for temperature, radiation and potential evaporation based on the Makkink equation for the Rhine basin. The datasets have a spatial resolution of 1.2 × 1.2 km and an hourly timestep for the period from July 1996 through 2015. This dataset complements an earlier precipitation dataset for the same area, period and resolution.


2019 ◽  
Author(s):  
Amirhossein Mazrooei ◽  
Andrew W. Wood ◽  

Abstract. Uncertainties associated with the initial conditions (e.g. soil moisture content) of a hydrologic model have been recognized as one of the main sources of errors in hydrologic predictions, specifically over a rainfall-runoff regime. Apart from the recent advances in Data Assimilation (DA) for improving hydrologic predictions, this study explores variational assimilation (VAR) of gauge-measured daily streamflow data for updating initial state of soil moisture content of Variable Infiltration Capacity (VIC) Land Surface Model (LSM) in order to improve streamflow simulations as well as monthly streamflow forecasting. The study is conducted for the Tar River basin in North Carolina over 20-year period (1991–2010). The role of two critical parameters of VAR DA – the frequency of DA application and the length of assimilation window – in determining the skill of DA-improved streamflow predictions is also assessed. We found that correcting VIC model's initial conditions using a 7-day assimilation window results in the highest improvement in the skill of streamflow predictions quantified by Kling-Gupta Efficiency (KGE) and Nash-Sutcliffe Efficiency (NSE) metrics. In addition, the potential gain from VAR DA framework is quantified and compared under two 1-month ahead streamflow forecasting schemes: 1) deterministic forecasts developed by using ECHAM4.5 GCM 1-month ahead precipitation forecasts and 2) Probabilistic forecasts from Ensemble Streamflow Prediction (ESP) approach. This study also examines the persistence of the DA impact in the monthly predictions by quantifying the enhanced accuracy in daily flows over extending forecast lead time blocks. Analyses show that the the corrected initial state conditions continually enhance the 7–8 days ahead predictions, but after that the errors in forcings dominate the DA effects. Still, the overall impact of VAR DA in monthly streamflow forecasting is positive.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
R. Mendes ◽  
J. C. B. da Silva ◽  
J. M. Magalhaes ◽  
B. St-Denis ◽  
D. Bourgault ◽  
...  

AbstractInternal waves (IWs) in the ocean span across a wide range of time and spatial scales and are now acknowledged as important sources of turbulence and mixing, with the largest observations having 200 m in amplitude and vertical velocities close to 0.5 m s−1. Their origin is mostly tidal, but an increasing number of non-tidal generation mechanisms have also been observed. For instance, river plumes provide horizontally propagating density fronts, which were observed to generate IWs when transitioning from supercritical to subcritical flow. In this study, satellite imagery and autonomous underwater measurements are combined with numerical modeling to investigate IW generation from an initial subcritical density front originating at the Douro River plume (western Iberian coast). These unprecedented results may have important implications in near-shore dynamics since that suggest that rivers of moderate flow may play an important role in IW generation between fresh riverine and coastal waters.


2021 ◽  
Author(s):  
Xinping Xu ◽  
Shengping He ◽  
Yongqi Gao ◽  
Botao Zhou ◽  
Huijun Wang

AbstractPrevious modelling and observational studies have shown discrepancies in the interannual relationship of winter surface air temperature (SAT) between Arctic and East Asia, stimulating the debate about whether Arctic change can influence midlatitude climate. This study uses two sets of coordinated experiments (EXP1 and EXP2) from six different atmospheric general circulation models. Both EXP1 and EXP2 consist of 130 ensemble members, each of which in EXP1 (EXP2) was forced by the same observed daily varying sea ice and daily varying (daily climatological) sea surface temperature (SST) for 1982–2014 but with different atmospheric initial conditions. Large spread exists among ensemble members in simulating the Arctic–East Asian SAT relationship. Only a fraction of ensemble members can reproduce the observed deep Arctic warming–cold continent pattern which extends from surface to upper troposphere, implying the important role of atmospheric internal variability. The mechanisms of deep Arctic warming and shallow Arctic warming are further distinguished. Arctic warming aloft is caused primarily by poleward moisture transport, which in conjunction with the surface warming coupled with sea ice melting constitutes the surface-amplified deep Arctic warming throughout the troposphere. These processes associated with the deep Arctic warming may be related to the forcing of remote SST when there is favorable atmospheric circulation such as Rossby wave train propagating from the North Atlantic into the Arctic.


Sign in / Sign up

Export Citation Format

Share Document